首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the suite of commonly used backbone experiments, HNCACO presents an unresolved sensitivity limitation due to fast 13CO transverse relaxation and passive 13Calpha-13Cbeta coupling. Here, we present a high-sensitivity 'just-in-time' (JIT) HN(CA)CO pulse sequence that uniformly refocuses 13Calpha-13Cbeta coupling while collecting 13CO shifts in real time. Sensitivity comparisons of the 3-D JIT HN(CA)CO, a CT-HMQC-based control, and a HSQC-based control with selective 13Calpha inversion pulses were performed using a 2H/13C/15N labeled sample of the 29 kDa HCA II protein at 15 degrees C. The JIT experiment shows a 42% signal enhancement over the CT-HMQC-based experiment. Compared to the HSQC-based experiment, the JIT experiment is 16% less sensitive for residues experiencing proper 13Calpha refocusing and13Calpha-13Cbeta decoupling. However, for the remaining residues, the JIT spectrum shows a 106% average sensitivity gain over the HSQC-based experiment. The high-sensitivity JIT HNCACO experiment should be particularly beneficial for studies of large proteins to provide 13CO resonance information regardless of residue type.  相似文献   

2.
We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the alpha- and beta-carbon and alpha-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H(N), N, C(alpha), C(beta), and H(alpha) nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D (15)N-(1)H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.  相似文献   

3.
Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes use of a 1?N-1H-TROSY element and a 13C'-13CA CRINEPT step combined with a multiple quantum coherence during the 13CA evolution period. Because of the introduction of these relaxation-optimized elements and 10 less pulses required, when compared with the conventional TROSY-HN(CO)CA experiment an average signal enhancement of a factor of 1.8 was observed for the membrane protein-detergent complex KcsA with a rotational correlation time τ(c) of around 60 ns.  相似文献   

4.
Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H(α), C(α), C(β) and CO) for establishing sequential backbone assignment. Because most conventional 4-D triple-resonance experiments share an overlapping C(α) evolution period, combining existing 4-D experiments does not offer an optimal solution for non-redundant collection of a complete set of backbone resonances. Using alternative chemical shift evolution schemes, we propose a new pair of 4-D triple-resonance experiments--HA(CA)CO(CA)NH/HA(CA)CONH--that complement the 4-D HNCACB/HN(CO)CACB experiments to provide complete backbone resonance information. Collection of high-resolution 4-D spectra with sparse sampling and FFT-CLEAN processing enables efficient acquisition and assignment of complete backbone resonances of IDPs. Importantly, because the CLEAN procedure iteratively identifies resonance signals and removes their associating aliasing artifacts, it greatly reduces the dependence of the reconstruction quality on sampling schemes and produces high-quality spectra even with less-than-optimal sampling schemes.  相似文献   

5.
The new variant of known HNCACB and HN(CO)CACB techniques is proposed that employs excitation and evolution of double quantum Calpha-Cbeta coherences. The most important features of the new method are: increased signal dispersion, lack of splittings due to 1J(Calpha-Cbeta) spin-spin couplings, and absence of accidental cancellations of positive and negative signals. The acquisition of both DQ-HN[CACB] and DQ-HN(CO)[CACB] techniques enables sequential assignment of protein backbone, using only Calpha-Cbeta DQ-frequencies. The determination of all Calpha and Cbeta chemical shifts requires, however, a comparison with HN(CO)CA or HNCA spectra. Examples of applications of the DQ-HN[CACB] and DQ-HN(CO)[CACB] experiments are presented, employing the 2D Reduced Dimensionality approach for 13C, 15N-labeled ubiquitin, and the 3D acquisition for 13C, 15N-double labeled Ca2+ -binding bovine S100A1 protein in the apo state (21 kDa) with overall correlation time of 8.1 ns.  相似文献   

6.
7.
Sensitivity-enhanced versions of the IPAP, TROSY-anti-TROSY, and E.COSY experiments for measuring one-bond 15N-1HN couplings are presented. Together with the previously developed sensitivity-enhanced E.COSY-type HSQC experiment they comprise a suite of sensitivity-enhanced experiments that allows one to chose the optimal spectrum for accurate measurement of one-bond 15N-1HN residual dipolar couplings in proteins. Since one-bond 15N-1HN residual dipolar couplings play uniquely important roles in structural NMR, these additional methods provide further tools for improving structure determination of proteins and other biological macromolecules.  相似文献   

8.
For very large proteins in the highest magnetic fields, the large chemical shift anisotropy (CSA) of carbonyl carbon deteriorates coherence transfer efficiency in experiments designed for unambiguous sequential backbone assignment. In this communication, coherence throughput of several TROSY experiments is evaluated. Two new experiments, MP-HNCA and HN(CO)CANH, are also introduced as attractive alternatives for sequential assignment purposes of large proteins with correlation time over 50 ns. Their theoretical coherence transfer efficiencies for the interresidual (13)C(alpha) correlations are significantly better than in recently introduced MP-CT-HNCA and sequential HNCA experiments. The improvement with the new experiments is observed already on 60.8 kDa homodimer of protein Cel6A at 800 (1)H MHz.  相似文献   

9.
Two 3D NMR pulse sequences that correlate aliphatic gamma carbon resonance frequencies to amide proton and nitrogen chemical shifts in perdeuterated proteins are presented. The HN(COCACB)CG provides only interresidue connectivities (NH(i)and Cγ(i-1)) while the HN(CACB)CG detects both the inter- and intraresidue (NH(i)and Cγ(i)or Cγ(i−1)) correlations. These two experiments are useful for sequential assignments and the identification of residue type from the Cγshifts. Spectra acquired on a perdeuterated 53-kDa protein illustrate the sensitivity and utility of these experiments.  相似文献   

10.
Rapid resonance assignment is a key requirement in structural genomics research by NMR. In this context we present here two new pulse sequences, namely, HNN-A and HN(C)N-A that have been developed by simple modification of the previously described pulse sequences, HNN and HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for H(N) and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR, 20 (2001) 135-147]. These increase the number of start/check points in HNN and/or HN(C)N spectra and hence help in pacing up resonance assignment in proteins.  相似文献   

11.
We illustrate an approach that uses the backbone carbonyl chemical shift to relieve resonance overlaps in triple-resonance assignment experiments conducted on protein samples. We apply this approach to two cases of simultaneous overlaps: those of ((1)H(N), (15)N) spin pairs and those of ((1)H(alpha), (13)C(alpha)) spin pairs in residues preceding prolines. For these cases we employed respectively CBCACO(N)H and H(CA)CON experiments, simple variants of the commonly used CBCA(CO)NH and HCA(CO)N experiments obtained by replacing one of the indirect dimensions with a carbonyl dimension. We present data collected on ribosomal protein S4 using these experiments, along with overlap statistics for four other polypeptides ranging in size from 76 to 263 residues. These data indicate that the CBCACO(N)H, in combination with the CBCA(CO)NH, can relieve >83% of the ((1)H(N), (15)N) and ((1)H(N), (13)C') overlaps for these proteins. The data also reveal how the H(CA)CON experiment successfully completed the assignment of triply and quadruply degenerate X-Pro spin systems in a mobile, proline-rich region of S4, even when X was a glycine. Finally, we discuss the relative sensitivities of these experiments compared to those of existing sequences, an analysis that reinforces the usefulness of these experiments in assigning extensively overlapped and/or proline-rich sequences in proteins.  相似文献   

12.
13.
Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CO N CA experiment establishes the correlation of (13)C(i-1) to (13)C alpha(i) and (15)N(i) by simultaneously encoding the (13)CO(i-1) and (15)N(i) chemical shifts. The CA N COCA experiment establishes the correlation (13)Ca(i) and (15)CO(i) to (13)C alpha(i-1) and (15)N(i-1) within a single experiment by simultaneous encoding of the (13)C alpha(i) and (15)N(i) chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.  相似文献   

14.
Aligning lipid bilayers in nanoporous anodized aluminum oxide (AAO) is a new method to help study membrane proteins by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR) spectroscopic methods. The ability to maintain hydration, sample stability, and compartmentalization over long periods of time, and to easily change solvent composition are major advantages of this new method. To date, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) has been the only phospholipid used for membrane protein studies with AAO substrates. The different properties of lipids with varying chain lengths require modified sample preparation procedures to achieve well formed bilayers within the lining of the AAO substrates. For the first time, the current study presents a simple methodology to incorporate large quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), DMPC, and 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) phospholipids inside AAO substrate nanopores of varying sizes. (2)H and (31)P solid-state NMR were used to confirm the alignment of each lipid and compare the efficiency of alignment. This study is the first step in standardizing the use of AAO substrates as a tool in NMR and EPR and will be useful for future structural studies of membrane proteins. Additionally, the solid-state NMR data suggest possible applications of nanoporous aluminum oxide in future vesicle fusion studies.  相似文献   

15.
The conventional HNCA pulse sequence suffers from the ambiguity that it cannot distinguish inter- and intraresidue correlations because the one-bond and two-bond J(NC(alpha)) coupling constants are of similar magnitude. This paper presents a novel pulse sequence, sequential HNCA, that leads to a spectrum exhibiting exclusively interresidue correlations. This important sequential information has so far usually been obtained by an HN(CO)CA experiment that for medium field strengths typically also is more sensitive than HNCA. However, for increasing static magnetic fields the chemical shift anisotropy relaxation mechanism of carbonyl carbons becomes more and more efficient, leading to a degradation of the HN(CO)CA sensitivity. Hence there is a point where the sequential HNCA experiment becomes the most sensitive option for sequential N-C(alpha) correlation.  相似文献   

16.
A new procedure for Fourier transform with respect to more than one time variable simultaneously is proposed for NMR data processing. In the case of two-dimensional transform the spectrum is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Therefore, it enables one to Fourier transform arbitrarily sampled time domain and thus allows for analysis of high dimensionality spectra acquired in a short time. The proposed method is not limited to radial sampling, it requires only to fulfill the Nyquist theorem considering two or more time domains at the same time. We show the application of new approach to the 3D HNCO spectrum acquired for protein sample with radial and spiral time domain sampling.  相似文献   

17.
Recent developments in the direct observation of J couplings across hydrogen bonds in proteins and nucleic acids provide additional information for structure and function studies of these molecules by NMR spectroscopy. A J(NN)-correlated [(15)N, (1)H] TROSY experiment proposed by Pervushin et al. (Proc. Natl. Acad. Sci. USA 95, 14147-14151, 1998) can be applied to measure (h)J(HN) in smaller nucleic acids in an E.COSY manner. However, it cannot be effectively applied to large nucleic acids, such as tRNA(Trp), since one of the peaks corresponding to a fast relaxing component will be too weak to be observed in the spectra of large molecules. In this Communication, we proposed a modified J(NN)-correlated [(15)N, (1)H] TROSY experiment which enables direct measurement of (h)J(HN) in large nucleic acids.  相似文献   

18.
A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables one to accurately measure secondary phase shifts and amplitude imbalances. Application to constant time 2D [13C, 1H]-HSQC spectra recorded for a protein sample with canonical MHS/HS schemes showed that accurate CAM data acquisition can be readily implemented on modern spectrometers for experiments based on through-bond polarization transfer. Fourth, when moderate variations of secondary phase shifts with primary phase shift and/or sampling directionality are encountered, generalized theory allowed comparison of the robustness of different MHS/HS schemes for CAM data acquisition, and thus to identify the scheme best suited to suppress dispersive peak components and quadrature image peaks. Moreover, it is shown that for spectra acquired with several indirect evolution periods, the best suited scheme can be identified independently for each of the periods.  相似文献   

19.
Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many instances sensitivity rather than time remains of foremost importance when collecting data on protein samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the minimal set of radial sampling angles required to resolve all peaks of interest in combination with a fundamental statistical property of radial sampled data. The approach appears general and can achieve a substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time. Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First, data collection is optimized using routines to determine a minimal set of radial sampling angles required to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate combinations of experimental parameters (transients and increments) are defined by simple statistical considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally, the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise removal step is employed.  相似文献   

20.
Triple-resonance NMR experiments are nearly essential for performing backbone assignments of proteins larger than 15 kDa. Our work extends the double constant-time (2CT) evolution scheme to triple-resonance 3D and 4D experiments. The modifications needed to accomplish 2CT evolution in triple resonance experiments are straight forward, are completely general, and consequently, will yield increased resolution for all out-and-back experiments. We expect that the increased resolution of experiments presented here will be useful in the study of larger proteins (>30 kDa) and in the study of highly helical proteins where1HN,15N, and13C dimensions are poorly dispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号