首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Friction stir welding (FSW) is a relatively modern welding process, which not only provides the advantages offered by fusion welding methods, but also improves mechanical properties as well as metallurgical transformations due to the pure solid-state joining of metals. The FSW process is composed of three main stages; penetrating or preheating stage, welding stage and cooling stage. The thermal history and cooling rate during and after the FSW process are decisive factors, which dictate the weld characteristics. In the current paper, a novel transient analytical solution based on the Green’s function method is established to obtain the three-dimensional temperature field in the welding stage by considering the FSW tool as a circular heat source moving in a finite rectangular plate with cooling surface and non-uniform and non-homogeneous boundary and initial conditions. The effect of penetrating/preheating stage is also taken into account by considering the temperature field induced by the preheating stage to be the non-uniform initial condition for the welding stage. Similarly, cooling rate can be calculated in the cooling stage. Furthermore, the simulation of the FSW process via FEM commercial software showed that the analytical and the numerical results are in good agreement, which validates the accuracy of the developed analytical solution.  相似文献   

2.
In this paper, an algorithm is proposed for the solution of second-order boundary value problems with two-point boundary conditions. The Green’s function method is applied first to transform the ordinary differential equation into an equivalent integral one, which has already satisfied the boundary conditions. And then, the homotopy perturbation method is used to the resulting equation to construct the numerical solution for such problems. Numerical examples demonstrate the efficiency and reliability of the algorithm developed, it is quite accurate and readily implemented for both linear and nonlinear differential equations with homogeneous and nonhomogeneous boundary conditions. Furthermore, the lower order approximation is of higher accuracy for most cases. Some other extended applications of this algorithm are also exhibited.  相似文献   

3.
Green’s function for isotropic thermoelastic two-phase infinite plane under a line heat source is established in this paper. By virtue of the fourth compact general solutions in Part I which is expressed in three harmonic functions, six new suitable harmonic functions with undetermined constants are constructed for the two semi-infinite planes of the two-phase infinite plane, respectively. The corresponding thermoelastic field can be obtained by substituting these harmonic functions into the general solution, and the undetermined constants can be determined by compatibility conditions and the equilibrium conditions. Numerical results are given graphically by contours.  相似文献   

4.
Reaction-diffusion equations are commonly used in different science and engineering fields to describe spatial patterns arising from the interaction of chemical or biochemical reactions and diffusive transport mechanisms. The aim of this work is to show that a Green’s function formulation of reaction-diffusion PDEs is a suitable framework to derive FD schemes incorporating both O(h2) accuracy and nonlocal approximations in the whole domain (including boundary nodes). By doing so, the approach departs from a Green’s function formulation of the boundary-value problem to pose an approximation problem based on a domain decomposition. Within each subdomain, the corresponding integral equation is forced to have zero residual at given grid points. Different FD schemes are obtained depending on the numerical scheme used for computing the Green’s integral over each subdomain. Dirichlet and Neumann boundary conditions are considered, showing that the FD scheme based on the Green’s function formulation incorporates, in a natural way, the effects of boundary nodes in the discretization approximation.  相似文献   

5.
The problem of determining the steady-state axisymmetric temperature distribution in a bimaterial with a planar interface is considered here. The interface is either low or high conducting. Special Green’s functions satisfying the thermal conditions on the interface are derived and employed to obtain boundary integral equations whose path of integration does not include the interface. Boundary element procedures that do not require the interface to be discretized into elements are proposed for solving the problem under consideration.  相似文献   

6.
The complete 3D dynamic Green’s functions in the multilayered poroelastic media are presented in this study. A method of potentials in cylindrical coordinate system is applied first to decouple the Biot’s wave equations into four scalar Helmholtz equations, and then, general solutions to 3D wave propagation problems are obtained. After that, a three vector base and the propagator matrix method are introduced to treat 3D wave propagation problems in the stratified poroelastic half-space disturbed by buried sources. It is known that the original propagator algorithm has the loss-of-precision problem when the waves become evanescent. At present, an orthogonalization procedure is inserted into the matrix propagation loop to avoid the numerical difficulty of the original propagator algorithm. At last, the validity of the present approach for accurate and efficient calculating 3D dynamic Green’s functions of a multilayered poroelastic half-space is confirmed by comparing the numerical results with the known exact analytical solutions of a uniform poroelastic half-space.  相似文献   

7.
A sequential method is proposed to estimate boundary condition of the two-dimensional hyperbolic heat conduction problems. An inverse solution is deduced from a finite difference method, the concept of the future time and a modified Newton–Raphson method. The undetermined boundary condition at each time step is denoted as an unknown variable in a set of non-linear equations, which are formulated from the measured temperature and the calculated temperature. Then, an iterative process is used to solve the set of equations. No selected function is needed to represent the undetermined function in advance. The example problem is used to demonstrate the characteristics of the proposed method. In the example, a well-known problem is used to demonstrate the validity of the proposed direct method and then the inverse solutions are evaluated. In the second example, the larger value of the relaxation time is implemented in the direct solutions and the inverse solutions. The close agreement between the exact values and the estimated results is made to confirm the validity and accuracy of the proposed method. The results show that the proposed method is an accurate and stable method to determine the boundary conditions in the two-dimensional inverse hyperbolic heat conduction problems.  相似文献   

8.
Based on the 2D general solutions of orthotropic thermoelastic material, the Green’s function for a steady point heat source in the interior of semi-infinite orthotropic thermoelastic plane is constructed by three newly introduced harmonic functions. All components of coupled field in semi-infinite thermoelastic plane are expressed in terms of elementary functions. Numerical results are given graphically by contours.  相似文献   

9.
The question of non-uniqueness in the integral formulation of an exterior boundary value problem in the elastic two-dimensional case has been resolved using the modified Green’s function technique. In this work, a new criterion of optimality based on the minimization of the norm of the kernel of the modified integral operator is established.  相似文献   

10.
This paper addresses the problem of finding a series representation for the Green’s function of the Helmholtz operator in an infinite circular cylindrical waveguide with impedance boundary condition. Resorting to the Fourier transform, complex analysis techniques and the limiting absorption principle (when the undamped case is analyzed), a detailed deduction of the Green’s function is performed, generalizing the results available in the literature for the case of a complex impedance parameter. Procedures to obtain numerical values of the Green’s function are also developed in this article.  相似文献   

11.
This paper deals with modelling the workpiece temperature field produced during the grinding process. The proposed model is given in terms of a two-dimensional boundary-value problem where the interdependence among the grinding wheel, the workpiece and the coolant is described by two variable functions in the boundary condition. An explicit integral form solution is constructed using the Laplace and Fourier transforms and the Green’s function method.  相似文献   

12.
Boruvka’s algorithm, which computes a minimum cost spanning tree, is used to define a rule to share the cost among the nodes (agents). We show that this rule coincides with the folk solution, a very well-known rule of this literature.  相似文献   

13.
14.
The two dimensional diffusion equation of the form is considered in this paper. We try a bi-cubic spline function of the form as its solution. The initial coefficients Ci,j(0) are computed simply by applying a collocation method; Ci,j = f(xiyj) where f(xy) = u(xy, 0) is the given initial condition. Then the coefficients Ci,j(t) are computed by X(t) = etQX(0) where X(t) = (C0,1C0,1C0,2, … , C0,NC1,0, … , CN,N) is a one dimensional array and the square matrix Q is derived from applying the Galerkin’s method to the diffusion equation. Note that this expression provides a solution that is not necessarily separable in space coordinates x, y. The results of sample calculations for a few example problems along with the calculation results of approximation errors for a problem with known analytical solution are included.  相似文献   

15.
Analytical solutions to the heat conduction problems for a cylinder and a ball are obtained by the integral method of heat balance. To improve the accuracy of the solutions, the temperature function is approximated by polynomials of high degrees. Their coefficients are determined via introducing additional boundary conditions, which are found from the governing differential equation and the basic boundary conditions, including those specified at the temperature perturbation front. It is shown that the additional boundary conditions, even in the second approximation, lead to a considerable improvement in the solution accuracy.  相似文献   

16.
The fundamental problem of the calculus of variations on time scales concerns the minimization of a delta-integral over all trajectories satisfying given boundary conditions. This includes the discrete-time, the quantum, and the continuous/classical calculus of variations as particular cases. In this note we follow Leitmann’s direct method to give explicit solutions for some concrete optimal control problems on an arbitrary time scale.  相似文献   

17.
In this paper, we study the Sobolev’s spaces on time scales and their properties. As applications, we present a recent approach via variational methods and the critical point theory to obtain the existence of solutions for a class of second order Hamiltonian systems on time scales. By establishing a proper variational setting, three existence results for systems under consideration are obtained. Finally, three examples are presented to illustrate the feasibility and effectiveness of the existence results.  相似文献   

18.
The ADO method, an analytical version of the discrete-ordinates method, is used here to solve a heat-transfer problem in a rarefied gas confined in a channel, as well as to solve a half-space problem in order to evaluate the temperature jump at the wall. This work is an extension of a previous work, devoted to flow problems, where the complete development of the solution, which is analytical in terms of the spatial variable, is presented in a way, such that, a wide class of kinetic models are considered, in an unified approach. A series of numerical results are showed and different simulations are used in order to establish a general comparative analysis based on this consistent set of results provided by the same methodology. In particular, numerical results for heat-flow profile, temperature and density perturbations are obtained for channels (walls), defined by different materials, on which different temperatures are imposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号