首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
The study of water quality and the quantification of reserves and their variations according to natural and anthropogenic forcing is necessary to establish an adequate management plan for groundwater resources. For this purpose, a modeling approach is a useful tool that allows, after calibration phase and verification of simulation, and under different scenarios of forcing and operational changes, to estimate and control the groundwater quantity and quality. The main objective of this study is to collect all available data in a model that simulates the Jeffara of Medenine coastal aquifer system functioning. To achieve this goal, a conceptual model was constructed based on previous studies and hydrogeological investigations. The regional groundwater numerical flow model for the Jeffara aquifer was developed using MODFLOW working under steady-state and transient conditions. Groundwater elevations measured from the piezometric wells distributed throughout the study area in 1973 were selected as the target water levels for steady state (head) model calibration. A transient simulation was undertaken for the 42 years from 1973 to 2015. The historical transient model calibration was satisfactory, consistent with the continuous piezometric decline in response to the increase in groundwater abstraction. The developed numerical model was used to study the system's behavior over the next 35 years under various constraints. Two scenarios for potential groundwater extraction for the period 2015–2050 are presented. The predictive simulations show the effect of the increase of the exploitation on the piezometric levels. To study the phenomenon of salinization, which is one of the most severe and widespread groundwater contamination problems, especially in coastal regions, a solute transport model has been constructed by using MT3DMS software coupled with the groundwater flow model. The best calibration results are obtained when the connection with the overlying superficial aquifer is considered suggesting that groundwater contamination originates from this aquifer. Recommendations for water resource managers
  • The results of this study show that Groundwater resources of Jeffara of Medenine coastal aquifer in Tunisia are under immense pressure from multiple stresses.
  • The water resources manager must consider the impact of economic and demographic development in groundwater management to avoid the intrusion of saline water.
  • The results obtained presented some reference information that can serve as a basis for water resources planning.
  • The model runs to provide information that managers can use to regulate and adequately control the Jeffara of Medenine water resources.
  相似文献   

2.
In this article, we study the finite volume element methods for numerical solution of the pollution in groundwater flow in a two‐dimensional convex polygonal domain. These type flow are uniform transport in a fully saturated incompressible porous media, which may be anisotropic with respect to hydraulic conductivity, but features a direction independent of dispersivity. A fully finite volume scheme is analyzed in this article. The discretization is defined via a planar mesh consisting of piecewise triangles. Optimal order error estimates in H1 and L2 norms are obtained. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
Steady groundwater flow with steep gradients in a vertical plane due to superficial recharge/drainage, inner sources/sinks and a one‐sided pressure boundary condition can be described by a 2D Poisson equation with a nonlinear free surface boundary condition. By means of conformal mapping techniques Schmitz and Edenhofer [1] derived the exact explicit solution of this problem in a horizontally infinite aquifer. Their results are extended to problems with a one‐sided vertical pressure boundary condition, modelling f. ex. the boundary between an aquifer and an adjacent free water body. According to ist simple parametrization, this approach can be applied on one hand to model various real world phenomena like river–aquifer–systems. It may on the other hand serve as a tool for investigating the exactness of numerical solutions and the range of validity of simplifying assumptions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Groundwater is the natural resource most extracted in the world. It supplies 50% of the total potable water requirements, 40% of the industry take, and 20% of agriculture groundwater is a strategic resource for every country. That common‐pool resources are highly susceptible to lead to a tragedy of the commons is a well‐known fact. We claim that a combination of groundwater modeling, optimization, and a game theoretical analysis may in fact avoid the tragedy. A groundwater model in MODFLOW from Zamora aquifer in Mexico was used as input of a basic but instructive, optimization problem: extract the greatest possible volume of water, but at the same time minimizing the drawdown and drawdown velocity. The solutions of the optimization problem were used to construct the payoffs of a hypothetical game among the aquifer users, the resource's administrator, and a resource protector entity. We show that the success of the optimal management program depends heavily on the information that the users have about the resource. Therefore, better decision‐making processes are a consequence of sustainability literacy. Particularly, water literacy could lead to the usage of water considering it as a part of an ecosystem and not only as a natural resource. Additionally, a new non‐classical equation for underground flow was derived, that may be specially important to understand and predict the groundwater flow in highly heterogeneous conditions as in karstic aquifers or fractured media. © 2013 Wiley Periodicals, Inc. Complexity 19: 9–21, 2013  相似文献   

5.
Starting from the 3D Boussinesq model and taking the limit as the domain thickness tends to zero, we derive rigorously the 2D model for natural convection in shallow water. The model reduces to a degenerated elliptic equation for the pressure, an explicit formula for horizontal components of the velocity and a vertical diffusion for the vertical component. The macroscopic flow is driven by temperature variations as well as the bottom topography.  相似文献   

6.
The results from a 3D non-linear kε turbulence model with vegetation are presented to investigate the flow structure, the velocity distribution and mass transport process in a straight compound open channel and a curved open channel. The 3D numerical model for calculating flow is set up in non-orthogonal curvilinear coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLEC algorithm is applied to acquire the coupling of velocity and pressure. The non-linear kε turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The water level of this model is determined from 2D Poisson equation derived from 2D depth-averaged momentum equations. For concentration simulation, an expression for dispersion through vegetation is derived in the present work for the mixing due to flow over vegetation. The simulated results are in good agreement with available experimental data, which indicates that the developed 3D model can predict the flow structure and mass transport in the open channel with vegetation.  相似文献   

7.
与常规井数值模拟相比,非常规井数值模拟侧重于刻画垂直、水平井筒内的多相流动,解释由于摩擦、静水力、加速度以及滑移造成的各相之间的速度差及压力损失,模拟井下流量控制设备及复杂现象.从复杂结构井的流量方程、多相井筒管流与油藏渗流耦合模拟、多段井模型、井下流量控制设备模拟、近井区域粗化、井下复杂现象模拟和嵌入式裂缝模型7个方面出发总结了非常规井数值模拟技术研究进展和主要缺陷.基于多段井模型的井筒 油藏耦合数值模拟、扩展井模型与油藏模型耦合模拟、流固耦合数值模拟、对井下监测调控设备的数值模拟以及多段压裂复杂结构井的数值模拟是未来的发展趋势.  相似文献   

8.
应用Schwarz-Christoffel(S-C)变换方法,实现从复平面单位圆到多边形区域的共形映射,结合圆形管道下完全发展脉动流的Womersley算法理论,建立了基于S-C映射的非圆入口截面下的Womersley速度边界模型.在边界模型建立的基础上,应用计算流体力学方法,对基于生理真实的人体肺动脉二级分支血管在一个心动周期内的血流流动情况进行了数值模拟,并与通过外接圆管法设定入口速度边界条件得到的流场模拟结果进行了对比分析.分析结果表明,两者的模拟结果高度一致,但考虑到模拟效率和数值模拟结果的确定性,基于S-C映射的Womersley速度边界模型优于外接圆管方法,对于血管血流动力学的模拟研究更具有现实意义.  相似文献   

9.
Numerical integrations using the three dimensional ocean model based on the princeton ocean model (POM) were applied for the study of both sea level elevation and ocean circulation patterns forced by the wind fields during typhoons that moved over the Gulf of Thailand (GoT). The simulation concerned a case of Typhoon Linda which occurred during November 1-4, 1997. Typhoon Linda was one of the worst storms that passed the Gulf of Thailand and hit the southern coastal provinces of Thailand on November 3, 1997. It caused flooding and a strong wind covering large areas of agriculture and fisheries, which destroyed households, utilities and even human lives. The model is the time-dependent, primitive equation, Cartesian coordinates in a horizontal and sigma coordinate in the vertical. The model grid has 37 × 97 orthogonal curvilinear grid points in the horizontal, with variable spacing from 2 km near the head of the GoT to 55 km at the eastern boundary, with 10 sigma levels in the vertical conforming to a realistic bottom topography. Open boundary conditions are determined by using radiation conditions, and the sea surface elevation is prescribed from the archiving, validation and interpretation of satellite oceanographic data (AVISO). The initial condition is determined from the spin up phase of the first model run, which was executed by using wind stress calculated from climatological monthly mean wind, restoring-type surface heat and salt and climatological monthly mean freshwater flux. The model was run in spin up phase until an ocean model reached an equilibrium state under the applied force. A spatially variable wind field taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to compute the wind stress directly from the velocity fluctuations. Comparison of tendency between the sea surface elevations from model and the observed significant wave heights of moored buoys in the Gulf of Thailand under Seawatch project is investigated. The model predicts the sea level elevation up to 68.5 cm at the Cha-Am area located in the north of where the typhoon strands to the shore. Results of sea level elevation show that there is an area of peak set-up in the upper gulf, particularly in the western coast, and the effects of the storm surge are small at the lower gulf. During the entire period of this study, the surge in the gulf was induced by the northeasterly wind blowing over it.  相似文献   

10.
针对DRASTIC模型在地下水脆弱性评价应用中存在的不足,将模糊分析评价理论及三标度分两步的层次分析法引入地下水脆弱性评价中,构建了一套改进的DRASTIC模型,并将其运用到祁县东观镇地下水脆弱性评价的实例研究中,计算结果表明东观镇地下水脆弱性大致呈正态分布,偏低脆弱性地区占评价区域的38.3%,偏高脆弱性地区占61.7%,整体上,地下水系统易受污染、脆弱性偏高,与实际情况基本吻合.与传统DRASTIC模型相比,改进模型算得的地下水脆弱性等级变化更灵敏、分布范围更精确,更值得推广应用.  相似文献   

11.
Based on Adomian decomposition method, a new algorithm for solving boundary value problem (BVP) of nonlinear partial differential equations on the rectangular area is proposed. The solutions obtained by the method precisely satisfy all boundary conditions, except the small pieces near the four corners of the rectangular area. A theorem on the boundary error is given. Hence, the Adomian decomposition method is more efficiently applied to BVPs for partial differential equations. Segmented and weighted analytical solutions with a high accuracy for the BVP of nonlinear groundwater equations on a rectangular area are obtained by the present algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
2D and 3D turbulent convectional flows of viscous and incompressible fluids heated from below in a rectangular parallelepiped are numerically simulated. The horizontal boundaries are stress-free in 3D simulation and stress-free or rigid in 2D simulation. It is shown that although there is a quantitative discrepancy between the results of the 3D simulation and the experimental data, the 3D simulation shows correct power laws for the temperature and vertical velocity pulsations versus supercriticality greater than 150. In the 2D simulation, a similar correspondence is observed at relatively low supercriticality (approximately up to 250). At high supercriticality, in 2D convection there exists a large-scale structure that determines the flow properties.  相似文献   

13.
将城市交通路网抽象为二维连续的平面,提出一个考虑城市住房分布的二维连续型动态交通分配模型,并估计了城市交通污染物排放水平.该模型中,住房分布影响交通需求,出行者根据用户最优准则选择出发时间和路径,可以用于模拟城市交通运行的动态演化过程,得到密度、速度和流量等物理量.采用基于车辆速度和加速度的微观污染物排放模型VT-micro估计城市交通CO2动态排放水平.基于三角网格,采用有限体积法、投影算法和相继平均法进行数值求解,给出一个数值算例验证了模型和算法的有效性.  相似文献   

14.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

15.
研究区地下水主要为玄武岩类孔洞裂隙水,水文地质模型概化为各向异性非均质,根据第四系玄武岩承压含水层中地下水的分布特征及流动规律,建立二维非稳定流数学模型,采用广义差分法对其求解.通过研究区井群对模型进行识别、验证.结果表明,计算模型与实际水文地质条件比较接近;计算水位与实测水位相吻合.为城市地下水可持续性管理提供科学理论依据.  相似文献   

16.
垂直与水平渗透作用下潜水非稳定渗流运动规律   总被引:6,自引:1,他引:5  
对河渠边界控制的半无限含水层,建立垂向入渗与河渠水平渗透共同作用下的潜水非稳定渗流模型;利用Boussinesq第一线性化方法,通过Laplace变换,给出模型的解析解. 证明相关经典公式与模型特定解之间的转换关系,分析经典公式适用范围.根据模型解,逐一定量研究下述变量,如垂向入渗强度、河渠水位变动幅度、含水层结构参数如给水度和导压系数、计算点与边界之间的距离,对渗流过程的影响.这些变量的变化,对潜水位获最大上升速度的时间产生延迟效应;论证一些变量间产生等效延迟效应的条件.根据解的数学特征,讨论其对应的物理意义和潜水位变动规律.  相似文献   

17.
Saturated-unsaturated flow under a complex terrain is usually solved using the Richards equation. Finite difference or finite volume methods are commonly employed for discretization of Richards equation because of simplicity of coding. Complex subsurface boundary geometries lead to nonorthogonal grids in curvilinear grid systems, which leads to difficulty in discretization and mesh generation. This paper develops a vertical coordinate transform, enabling a computational domain regular in the vertical direction. As a result, the grid of curvilinear surfaces can be successfully transformed to a computational grid that allows solution of the Richards equation with efficient computation and simpler coding. The anisotropic Richards equation in the Cartesian coordinate system is transformed to the equation in the arbitrary coordinate system and further expressed as a form appropriate to the orthogonal coordinate system. The generalized third boundary condition is transformed to a form suited to the orthogonal coordinate system. The finite volume method is used to solve the Richards equation in the orthogonal coordinate system. Four cases are used to validate the present orthogonal coordinate system. The computational results from the orthogonal coordinate system are in good agreement with the results from Ansys Fluent solved in a Cartesian coordinate system for the subsurface flow case. For the coupled case of hill slopes, a good agreement between the computational results and the experimental data is obtained. The present results for V-titled catchment and slab case accord well with the results obtained from HydroGeoSphere and PAWS. The present algorithm can improve grid generation for solution of Richards equation in a hydrological model for a complex domain.  相似文献   

18.
Our goal was to model and analyze a stationary and evolutionary potential ideal fluid flow through the junction of two pipes in the gravity field. Inside the ‘vertical’ pipe, there is a heavy piston that can freely move along the pipe. In the stationary case, we are interested in the equilibrium position of the piston in dependence on the geometry of junction, and in the evolutionary case, we study motion of the piston also in dependence on geometry. We formulate corresponding initial and boundary value problems and prove the existence results. The problem is nonlinear because the domain is unknown. Furthermore, we study some qualitative properties of the solutions and compare them with the qualitative properties of a free piston problem for Newtonian fluid flow. All theoretical results are illustrated with numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
水平来流对扰动成长和对流周期性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
对Pr=0.0272的纯流体在矩形腔体外加水平来流时,进行二维流体力学基本方程组的数值模拟.研究了该纯流体Rayleigh-Benard对流的一维行波斑图的成长及时空的演化.发现对流成长过程可以划分为3个阶段,即对流发展、对流指数成长和周期变化。在对流指数成长阶段对不同相对Rayleigh(瑞利)数Rar的最大垂直流速场随时间变化的情况进行分析,获得了最大垂直流速场指数成长阶段的线性成长率γm和相对Rayleigh数Rar的关系公式.研究了行波周期受水平来流Reynolds(雷诺)数的影响,揭示了行波对流周期性及其对水平来流Reynolds数的依赖性.  相似文献   

20.
This paper developed an analytical solution for the problem of exit point evolution on the seepage face in the unconfined aquifer with sloping interface. A theoretical model for the groundwater drawdown problem in a half‐infinite aquifer with a sloping boundary is built in accordance with the linearized one‐dimensional Boussinesq equation and the Neumann boundary condition at the seepage point. The homotopy analysis method is then adopted for solving this dynamic boundary problem. By constructing two continuous deformations, the original problem could be converted into a group of subproblems with the same physical essence and similar mathematical solutions. To compare this analytical solution, a numerical model based on the finite volume method is developed, which employs adaptive grids to settle the dynamic boundary condition. The comparisons show that the analytical solution agrees with the numerical model well. The results are useful for the quantification of various hydrological problems. The methodology applied in this study is referential for other dynamic boundary problems as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号