共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the comparison of two non-probabilistic set-theoretical models for dynamic response measures of an infinitely long beam. The beam is on an uncertain foundation and subjected to a moving force with constant speed. The steady state vibration is analyzed with finite element method. The dynamic responses of the beam are approximated to the first-order respect of the uncertainty variables. As a rule, in convex models and interval analysis, the uncertainties are considered to be unknown, but they give out their allowable vector space. Comparing the convex models with interval analysis in mathematical proofs and numerical calculations, it’s shows that under the condition of transform an interval vector to an outer enclosed ellipsoid, the dynamic response of the infinitely long beam predicted by interval analysis is smaller than that by convex models; under the condition of transform a hyperellipsoid to an outer enclosed interval vector, the dynamic response of the infinitely long beam calculated by convex models is smaller than that by interval analysis method. 相似文献
2.
Based on interval mathematical theory, the interval analysis method for the sensitivity analysis of the structure is advanced in this paper. The interval analysis method deals with the upper and lower bounds on eigenvalues of structures with uncertain-but-bounded (or interval) parameters. The stiffness matrix and the mass matrix of the structure, whose elements have the initial errors, are unknown except for the fact that they belong to given bounded matrix sets. The set of possible matrices can be described by the interval matrix. In terms of structural parameters, the stiffness matrix and the mass matrix take the non-negative decomposition. By means of interval extension, the generalized interval eigenvalue problem of structures with uncertain-but-bounded parameters can be divided into two generalized eigenvalue problems of a pair of real symmetric matrix pair by the real analysis method. Unlike normal sensitivity analysis method, the interval analysis method obtains informations on the response of structures with structural parameters (or design variables) changing and without any partial differential operation. Low computational effort and wide application rang are the characteristic of the proposed method. Two illustrative numerical examples illustrate the efficiency of the interval analysis. 相似文献
3.
《Applied Mathematical Modelling》2014,38(7-8):2000-2014
Real engineering design problems are generally characterized by the presence of many often conflicting and incommensurable objectives. Naturally, these objectives involve many parameters whose possible values may be assigned by the experts. The aim of this paper is to introduce a hybrid approach combining three optimization techniques, dynamic programming (DP), genetic algorithms and particle swarm optimization (PSO). Our approach integrates the merits of both DP and artificial optimization techniques and it has two characteristic features. Firstly, the proposed algorithm converts fuzzy multiobjective optimization problem to a sequence of a crisp nonlinear programming problems. Secondly, the proposed algorithm uses H-SOA for solving nonlinear programming problem. In which, any complex problem under certain structure can be solved and there is no need for the existence of some properties rather than traditional methods that need some features of the problem such as differentiability and continuity. Finally, with different degree of α we get different α-Pareto optimal solution of the problem. A numerical example is given to illustrate the results developed in this paper. 相似文献
4.
A modification of a solution concept of the linear programming problem with interval coefficients in the constraints 总被引:1,自引:0,他引:1
Dorota Kuchta 《Central European Journal of Operations Research》2008,16(3):307-316
We propose a modification of a concept of solving a linear programming problem with interval coefficients in the constraints. The original concept imposes the decision maker a way comparing intervals, our modification—which is an interactive approach, comprising the original one as its special case—gives him more freedom in the choice of the preference relation. Thanks to this flexibility he may be able to find a solution which better suits his needs and attitude towards risk. What is more, our modification corrects a serious drawback of the original method. 相似文献
5.
In this paper, the computation of eigenvalue bounds for generalized interval eigenvalue problem is considered. Two algorithms based on the properties of continuous functions are developed for evaluating upper and lower eigenvalue bounds of structures with interval parameters. The method can provide the tightest bounds within a given precision. Numerical examples illustrate the effectiveness of the proposed method. 相似文献
6.
《Applied Mathematical Modelling》2014,38(15-16):3917-3928
This paper develops an economic order quantity (EOQ) model with uncertain data. For modelling the uncertainty in real-world data, the exponents and coefficients in demand and cost functions are considered as interval data and then, the related model is designed. The proposed model maximises the profit and determines the price, marketing cost and lot sizing with the interval data. Since the model parameters are imprecise, the objective value is imprecise, too. So, the upper and lower bounds are specially formulated for the problem and then, the model is transferred to a geometric program. The resulted geometric program is solved by using the duality approach and the lower and upper bounds are found out for the objective function and variables. Two numerical examples and sensitivity analysis are further used to illustrate the performance of the proposed model. 相似文献
7.
This paper proposes a new interval analysis method for the dynamic response of nonlinear systems with uncertain-but-bounded parameters using Chebyshev polynomial series. Interval model can be used to describe nonlinear dynamic systems under uncertainty with low-order Taylor series expansions. However, the Taylor series-based interval method can only suit problems with small uncertain levels. To account for larger uncertain levels, this study introduces Chebyshev series expansions into interval model to develop a new uncertain method for dynamic nonlinear systems. In contrast to the Taylor series, the Chebyshev series can offer a higher numerical accuracy in the approximation of solutions. The Chebyshev inclusion function is developed to control the overestimation in interval computations, based on the truncated Chevbyshev series expansion. The Mehler integral is used to calculate the coefficients of Chebyshev polynomials. With the proposed Chebyshev approximation, the set of ordinary differential equations (ODEs) with interval parameters can be transformed to a new set of ODEs with deterministic parameters, to which many numerical solvers for ODEs can be directly applied. Two numerical examples are applied to demonstrate the effectiveness of the proposed method, in particular its ability to effectively control the overestimation as a non-intrusive method. 相似文献
8.
Multistage dynamic networks with random arc capacities (MDNRAC) have been successfully used for modeling various resource allocation problems in the transportation area. However, solving these problems is generally computationally intensive, and there is still a need to develop more efficient solution approaches. In this paper, we propose a new heuristic approach that solves the MDNRAC problem by decomposing the network at each stage into a series of subproblems with tree structures. Each subproblem can be solved efficiently. The main advantage is that this approach provides an efficient computational device to handle the large-scale problem instances with fairly good solution quality. We show that the objective value obtained from this decomposition approach is an upper bound for that of the MDNRAC problem. Numerical results demonstrate that our proposed approach works very well. 相似文献
9.
The VIKOR method was developed for multi-criteria optimization of complex systems. It determines the compromise ranking list and the compromise solution obtained with the initial (given) weights. This method focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria. It introduces the multi-criteria ranking index based on the particular measure of “closeness” to the “ideal” solution. The aim of this paper is to extend the VIKOR method for decision making problems with interval number. The extended VIKOR method’s ranking is obtained through comparison of interval numbers and for doing the comparisons between intervals, we introduce α as optimism level of decision maker. Finally, a numerical example illustrates and clarifies the main results developed in this paper. 相似文献
10.
Yong-Hong Fan 《Journal of Mathematical Analysis and Applications》2010,365(2):525-516
By using the generalized continuation theorem, the existence of four positive periodic solutions for a delayed ratio-dependent predator-prey model with Holling type III functional response
11.
This paper develops a mixed-integer programming model to design the cellular manufacturing systems (CMSs) under dynamic environment. In dynamic environment, the product mix and part demand change under a multi-period planning horizon. Thus, the best designed cells for one period may not be efficient for subsequent periods and reconfiguration of cells is required. Reconfiguration may involve adding, removing or relocating machines; it may also involve a change in processing rout of part types from a period to another. The advantages of the proposed model are as follows: considering the batch inter/intra-cell material handling by assuming the sequence of operations, considering alternative process plans for part types, and considering machine replication. The main constraints are maximal cell size and machine time-capacity. The objective is to minimize the sum of the machine constant and variable costs, inter- and intra-cell material handling, and reconfiguration costs. An efficient hybrid meta-heuristic based on mean field annealing (MFA) and simulated annealing (SA) so-called MFA–SA is used to solve the proposed model. In this case, MFA technique is applied to generate a good initial solution for SA. The obtained results show that the quality of the solutions obtained by MFA–SA is better than classical SA, especially for large-sized problems. 相似文献
12.
This paper proposes a common agent-based model for the simulation of MTS and MTO supply chains with dynamic structures. Based on the model, scholars can model supply chains easily. Basic characters of supply chains are proposed in the model. Agents, who are used to simulate the members of supply chains, produce appropriate products by intelligent choices. The relationships among agents are connected by their products. Different agents’ attributes are presented by their knowledge and actions of agents are introduced in the paper. Experiments are produced to show the availability of the agent-based model. The model should be available as a toolkit for the studying of dynamic supply chains. 相似文献
13.
14.
The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm. 相似文献
15.
16.
《Communications in Nonlinear Science & Numerical Simulation》2014,19(12):4148-4160
In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis. 相似文献
17.
18.
In this paper, we introduce a total step method for solving a system of linear complementarity problems with perturbations and interval data. It is applied to two interval matrices [A] and [B] and two interval vectors [b] and [c]. We prove that the sequence generated by the total step method converges to ([x∗],[y∗]) which includes the solution set for the system of linear complementarity problems defined by any fixed A∈[A],B∈[B],b∈[b] and c∈[c]. We also consider a modification of the method and show that, if we start with two interval vectors containing the limits, then the iterates contain the limits. We close our paper with two examples which illustrate our theoretical results. 相似文献
19.
《Optimization》2012,61(6):829-838
An exact penalty approach for solving minimization problems with a concave objective function, linear constraints and Boolean variables is proposed. The penalty problems have continuous variables. An estimation of the penalty parameter which guarantees the exactness can be calculated on the base of an auxiliary problem. The results are applied to problems with an arbitrary quadratic objective function, linear constraints and Boolean variables. This leads to a modified Lagrangean approach for the latter problems. In the general case, the penalty approach is compared with a direct application of results of global optimization to a modification of the initial problem. 相似文献
20.
The problem of structural instability in estimated macroeconomic relationships has recently surfaced anew, due to a series of articles by the rational expectations school. A key explanation for the observed instability is said to be that the parameters appearing in modelled macroeconomic relationships, traditionally treated as constant or purely random, must realistically be viewed as the reflections of the demand and supply decisions of optimizing agents in the economy reacting rationally to changes in endogenous and exogenous variables, including changes induced by shifts in government policy decision rules. The present paper develops a least-squares measure for simultaneously testing the basic compatibility of prior dynamical, observational, and distributional model specifications against actual data for a class of dynamic nonlinear economic models with parameters explicitly modelled as nonlinear functions of endogenous and exogenous variables. Using invariant imbedding techniques, an algorithm is derived for sequentially updating the optimal least-squares estimates for parameters, endogenous variables, and squared residual modelling error sums as the duration of the process increases and new observations are obtained.Dedicated to R. BellmanThis work was partially supported by the National Science Foundation under Grant No. ENG-77-28432 and the National Institutes of Health under Grant No. GM-3732-03. A previous version of this paper (Ref. 1) was presented at the Econometrics Modelling Research Seminar, Department of Economics, University of Southern California, Los Angeles, 1979. The authors are grateful to numerous colleagues for helpful comments. 相似文献