首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an effective cohesive discrete crack method in the context of the Reproducing Kernel Particle Method (RKPM) in order to study fracture of concrete structures. The discrete crack approach is based on the visibility method and a simple node splitting scheme. We also present an effective implementation of the visibility method and an iteration free algorithm by including the cohesive force term directly into the stiffness equations. The crack is represented by straight-line segments and the cohesive zone model is employed to model the post-localization behavior of concrete. The method is applied to several examples involving mode I and mixed-mode fracture. These results are compared to experimental data and show good agreement.  相似文献   

2.
This paper presents a novel two-level nesting smoothed meshfree method (NSMM), which significantly improves the computational efficiency of the meshfree Galerkin methods without losing their accuracy, thus facilitates the employment of meshfree methods in applications where background integration cells would be prohibitively expensive. In the NSMM, the system stiffness matrix is calculated using the general smoothing strain technique over the two-level nesting smoothing sub-domains where fewer integration points are used and the costly derivative computation of meshfree shape functions is avoided. The accuracy, efficiency and stability of the present method are assessed by virtue of several numerical examples for problems involving free and forced vibration analysis of the linear elastic continua and dynamic crack response of elastic solid. The results reveal that the NSMM stands out and achieves better performance compared to other existing approaches in the literature.  相似文献   

3.
Mixed discrete least squares meshfree (MDLSM) method has been developed as a truly meshfree method and successfully used to solve single-phase flow problems. In the MDLSM, a residual functional is minimized in terms of the nodal unknown parameters leading to a set of positive-definite system of algebraic equations. The functional is defined using a least square summation of the residual of the governing partial differential equations and its boundary conditions at all nodal points discretizing the computational domain. Unlike the discrete least squares meshfree (DLSM) which uses an irreducible form of the governing equations, the MDLSM uses a mixed form of the original governing equations allowing for direct calculation of the gradients leading to more accurate computational results. In this study, an Eulerian–Lagrangian MDLSM method is proposed to solve incompressible multiphase flow problems. In the Eulerian step, the MDLSM method is used to solve the governing phase averaged Navier–Stokes equations discretized at fixed nodal points to get the velocity and pressure fields. A Lagrangian based approach is then used to track different flow phases indexed by a set of marker points. The velocities of marker points are calculated by interpolating the velocity of fixed nodal points using a kernel approximation, which are then used to move the marker points as Lagrangian particles to track phases. To avoid unphysical clustering and dispersing of the marker points, as a common drawback of Lagrangian point tracking methods, a new approach is proposed to smooth the distribution of marker points. The hybrid Eulerian and Lagrangian characteristics of the approach used here provides clear advantages for the proposed method. Since the nodal points are static on the Eulerian step, the time-consuming moving least squares (MLS) approximation is implemented only once making the proposed method more efficient than corresponding fully Lagrangian methods. Furthermore, phases can be simply tracked using the Lagrangian phase tracking procedure. Efficiency of the proposed MDLSM multiphase method is evaluated using several benchmark problems and the results are presented and discussed. The results verify the efficiency and accuracy of the proposed method for solving multiphase flow problems.  相似文献   

4.
Numerical analysis of fracture in concrete is studied with a simplified discrete crack method. The discrete crack method is a meshless method in which the crack is modeled by discrete cohesive crack segments passing through the nodes. The cohesive crack segments govern the non-linear response of concrete in tension softening and introduce anisotropy in the material model. The advantage of the presented discrete crack method over other discrete crack method is its simplicity and applicability to many cracks. In contrast to most other discrete crack methods, no representation of the crack surface is needed. On the other hand, the accuracy of discrete crack methods is maintained. This is demonstrated through several examples.  相似文献   

5.
In this work, a novel approach for efficient analysis of transient thermo-elastic problems including a moving point heat source is presented. This approach is based on a meshfree method with dynamic reconfiguration of the nodal points. In order to accurately capture the large temperature gradients at the location of the concentrated heat source, a fine configuration of nodal points at this location is selected. In contrast, a coarser nodal arrangement is used in other parts of the problem domain. During the problem analysis, the fine nodal arrangement moves with the point heat source. Consequently, the meshfree methods are ideally suited to this approach. In the present work, the meshfree radial point interpolation method (RPIM) is adopted for the numerical analyses. Since the density of the nodal points varies in different parts of the domain, the background decomposition method (BDM) is used for efficient computation of the domain integrals. In the BDM, the density of the integration points conform to that of the nodal points and thus the computational effort is minimized. Some numerical examples are provided to assess the accuracy and usefulness of the proposed approach in computation of the temperature, displacement, and stress fields.  相似文献   

6.
The article deals with a flow in the tube of rectangular cross-section with an inner circular cylindrical element. We use the numerical method basing on R-functions. This method is meshfree and therefore more efficient than the finite element method that requires remeshing when the geometry of problem is changed. The dependence of the flow on the diameter of the central cylinder and its position in the duct is investigated under constant pressure gradient. It was found that the resistance decreases if the inner element is moved from the center of the duct.  相似文献   

7.
We present a robust and efficient approach to meshfree phase-field (PF) simulation of dendritic solidification on arbitrary domain geometries using smoothed particle hydrodynamics (SPH). We use radial basis functions (RBFs) and moving least squares (MLS) as alternative approaches for constructing kernel approximation functions exhibiting a higher order of consistency than traditional kernel functions used in SPH. In the proposed smoothed particle hydrodynamics-phase field method (SPH–PFM), proper discretization of the PF order parameter at the diffuse interface region can be easily accomplished independently from the particle spacing resolution used for computing the thermal field distribution. We use an implicit geometry construction approach to automatically generate virtual boundary particles to impose Neumann-type boundary conditions at the domain boundaries. We solve the Allen–Cahn equation locally at particles constructed at a narrow band around the interface region. Additionally, only first-order derivatives of the meshfree approximation functions are needed in our implementation to solve the governing equations. Mathematical formulation and detailed analysis will be presented and discussed where we investigate the effect of the meshfree approximation scheme on the final morphology of the grown dendrite.  相似文献   

8.
We are going to study a simple and effective method for the numerical solution of the closed interface boundary value problem with both discontinuities in the solution and its derivatives. It uses a strong‐form meshfree method based on the moving least squares (MLS) approximation. In this method, for the solution of elliptic equation, the second‐order derivatives of the shape functions are needed in constructing the global stiffness matrix. It is well‐known that the calculation of full derivatives of the MLS approximation, especially in high dimensions, is quite costly. In the current work, we apply the diffuse derivatives using an efficient technique. In this technique, we calculate the higher‐order derivatives using the approximation of lower‐order derivatives, instead of calculating directly derivatives. This technique can improve the accuracy of meshfree point collocation method for interface problems with nonhomogeneous jump conditions and can efficiently estimate diffuse derivatives of second‐ and higher‐orders using only linear basis functions. To introduce the appropriate discontinuous shape functions in the vicinity of interface, we choose the visibility criterion method that modifies the support of weight function in MLS approximation and leads to an efficient computational procedure for the solution of closed interface problems. The proposed method is applied for elliptic and biharmonic interface problems. For the biharmonic equation, we use a mixed scheme, which replaces this equation by a coupled elliptic system. Also the application of the present method to elasticity equation with discontinuities in the coefficients across a closed interface has been provided. Representative numerical examples demonstrate the accuracy and robustness of the proposed methodology for the closed interface problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1031–1053, 2015  相似文献   

9.
In the current work, a generalized mathematical model based on the Coimbra time fractional derivative of variable order, which describes an anomalous mobile-immobile transport process in complex systems is investigated numerically. A robust numerical technique based on the meshfree strong form method combined with an efficient time-stepping scheme is performed to compute the approximate solution of the problem with high accuracy. For this purpose, firstly, an effective implicit time discretization approach is used for discretizing the variable-order time fractional problem in the time direction. Then a global meshless technique based on the method of approximate particular solutions is performed to fully discretize the model in the spatial domain. The validity and performance of the procedure to numerically simulate the proposed generalized solute transport model on regular and irregular domains are demonstrated through some numerical examples.  相似文献   

10.
In this paper, we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients. There are two contributions of this paper. Firstly, we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space, which is competitive for high-dimensional random inputs. Secondly, the a priori error estimates are derived for the state,the co-state and the control variables. Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.  相似文献   

11.
The numerical solution of acoustic wave propagation problems in planar domains with corners and cracks is considered. Since the exact solution of such problems is singular in the neighborhood of the geometric singularities the standard meshfree methods, based on global interpolation by analytic functions, show low accuracy. In order to circumvent this issue, a meshfree modification of the method of fundamental solutions is developed, where the approximation basis is enriched by an extra span of corner adapted non-smooth shape functions. The high accuracy of the new method is illustrated by solving several boundary value problems for the Helmholtz equation, modelling physical phenomena from the fields of room acoustics and acoustic resonance.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(15-16):3781-3801
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.  相似文献   

13.
A computationally efficient procedure is presented for the prediction of mixed-mode strain energy release rates in practical problems of delamination. In this procedure, an analytical crack tip element analysis is used for the determination of all singular field quantities. By comparison with two- and three-dimensional finite element results, the procedure is shown to be accurate for mixed-mode problems where mode I, mode II and/or mode III crack tip singularities are present. The procedure is applicable for those cases where a near-tip inverse-square-root singularity exists, as well as those where an oscillatory singularity exists. For these latter cases, an alternative approach to using oscillatory field quantities to characterize crack advance is suggested.  相似文献   

14.
The problem on the stress–strain state near a mode I crack in an infinite plate is solved in the frame of a cohesive zone model. The complex variable method of Muskhelishvili is used to obtain the crack opening displacements caused by the cohesive traction, which models the failure zone at the crack tip, as well as by the external load. The finite stress condition and logarithmic singularity of the derivative of the separation with respect to the coordinate at the tip of a physical crack are taken into account.The cohesive traction distribution is sought in a piecewise linear form, nodal values of which are being numerically chosen to satisfy the traction-separation law. According to this law, the cohesive traction is coupled with the corresponding separation and fracture toughness. The tips of the physical crack and cohesive zone (geometric variables) along with the discrete cohesive traction are used as the problem parameters determining the stress-strain state. If the crack length is included in the set, then the critical crack size can be found for the given loading intensity.The obtained determining system of equations is solved numerically. To find the initial point for a standard numerical algorithm, the asymptotic determining system is derived. In this system, the geometric variables can be easily eliminated, which make it possible to linearize the system.In the numerical examples, the one-parameter traction-separation laws are used. Influence of the shape parameters of the law on the critical crack size and the corresponding cohesive length is studied. The possibility of using asymptotic solutions for determining the critical parameters is analysed. It is established that the critical crack length slightly depends on the shape parameter, while the cohesive length shows a strong dependence on the shape of cohesive laws.  相似文献   

15.
Meshfree modeling and analysis of physical fields in heterogeneous media   总被引:3,自引:0,他引:3  
Continuous and discrete variations in material properties lead to substantial difficulties for most mesh-based methods for modeling and analysis of physical fields. The meshfree method described in this paper relies on distance fields to boundaries and to material features in order to represent variations of material properties as well as to satisfy prescribed boundary conditions. The method is theoretically complete in the sense that all distributions of physical properties and all physical fields are represented by generalized Taylor series expansions in terms of powers of distance fields. We explain how such Taylor series can be used to construct solution structures – spaces of functions satisfying the prescribed boundary conditions exactly and containing the necessary degrees of freedom to satisfy additional constraints. Fully implemented numerical examples illustrate the effectiveness of the proposed approach.  相似文献   

16.
In this work,we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation ap-proach to implement spatial dimension approximation.Our main contribu-tion is to extend the existing gradient projection method to moderate high-dimensional space.The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework,and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach.We also present several numerical experiments to validate the theoretical re-sults of our approach and demonstrate the performance meshfree approxima-tion in solving stochastic optimal control problems.  相似文献   

17.
A meshfree method is developed for solving time-discrete diffusion equations that arise in models in brain research. Important criteria for a suitable method are flexibility with respect to domain geometry and the ability to work with very small moving sources requiring easy refinement possibilities. One part of the work concerns a meshfree discretization of the modified Helmholtz equation based on the related minimization problem and a local least-squares function approximation. In a second part, a node choosing algorithm is presented that moves around randomly distributed nodes for optimizing the node distribution and varying the node density as needed. The method is illustrated by two numerical tests.  相似文献   

18.
In this work, crack initiation in adhesive lap joints of arbitrary joint configuration is studied by means of a finite fracture mechanics approach. The analysis is based on a general stress solution for adhesive joints combined with a coupled stress and energy criterion. The instantaneous formation of a crack of finite size is predicted if a stress and energy criterion are satisfied simultaneously. The closed-form analytical solution of the stress field allows for an efficient evaluation of the crack initiation load and corresponding finite crack length. A comparison to experimental results from literature and to numerical results obtained with a cohesive zone model approach shows a good agreement. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, the updated Lagrangian Taylor-SPH meshfree method is applied to the numerical analysis of large deformation and failure problems under dynamic conditions. The Taylor-SPH method is a meshfree collocation method developed by the authors over the past years. The governing equations, a set of first-order hyperbolic partial differential equations, are written in mixed form in terms of stress and velocity. This set of equations is first discretized in time by means of a Taylor series expansion in two steps and afterwards in space using a corrected form of the SPH method. Two sets of particles are used for the computation resulting on the elimination of the classical tensile instability. In the paper presented herein the authors propose an updated Lagrangian Taylor-SPH approach to address the large deformations of the solid, and therefore the continuous re-positioning of the particles. In order to illustrate the performance and efficiency of the proposed method, some numerical examples based on elastic and viscoplastic materials involving large deformations under dynamic conditions are solved using the proposed algorithm. Results clearly show that the updated Lagrangian Taylor-SPH method is an accurate tool to model large deformation and failure problems under dynamic loadings.  相似文献   

20.
We introduce a consistent variational framework for inelasticity at finite strains, yielding dual balances in physical and material space as the Euler equations. The formulation is employed for the simultaneous usage of configurational forces as both driving forces for crack propagation as well as h-adaptive mesh refinement. The theoretical basis builds upon a global balance of internal and external power, where the mechanical response is exclusively governed by two scalar functions, the free energy function and a dissipation potential. The resulting variational structure is exploited in the context of fracture mechanics and yields evolution equations for internal variables. In the discrete setting, we present a geometry model fully separated from the finite element mesh structure that represents structural changes of the material configuration due to crack propagation. Advanced meshing algorithms provide an optimal discretization at the crack tip. Local and global criteria are obtained via error estimators based on configurational forces being interpreted as indicators of an energetic misfit due to an insufficient discretization. The numerical handling is decomposed into a staggered algorithm scheme for the dual set of equilibrium equations in material and physical space and efficient mesh generation tools. Exemplary numerical examples are considered to illustrate the method and to underline the effects of inelastic material behaviour in the presented context. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号