首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the second order statistics of post buckling response of functionally graded materials plate (FGM) subjected to mechanical and thermal loading with nonuniform temperature changes subjected to temperature independent (TID) and dependent (TD) material properties is examined. Material properties such as material properties of each constituent’s materials, volume fraction index are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear kinematic using modified C0 continuity. A direct iterative based C0 nonlinear finite element method (FEM) combined with mean centered first order perturbation technique (FOPT) proposed by last two authors for the composite plate is extended for Functionally Graded Materials (FGMs) plate with reasonable accuracy to compute the second order statistics (mean and coefficient of variation) of the post buckling load response of the FGM plates. The effect of random material properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, boundary conditions and types of loadings subjected to TID and TD material properties are presented through numerical examples. The performance of outlined present approach is validated with the results available in literatures and independent Monte Carlo simulation (MCS).  相似文献   

2.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

3.
In this paper, a nonlinear static finite element analysis of simply supported smart functionally graded (FG) plates in the presence/absence of the thermal environment has been presented. The substrate FG plate is integrated with the patches of piezoelectric fiber reinforced composite (PFRC) material which act as the distributed actuators of the plate. The material properties of the FG substrate plate are assumed to be temperature dependent and graded along the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The derivation of this nonlinear thermo-electro-mechanical coupled finite element model is based on the first order shear deformation theory and the Von Karman type geometric nonlinearity. The numerical solutions of the nonlinear equations of the finite element model are obtained by employing the direct iteration method. The numerical illustrations suggest the potential use of the distributed actuator made of the PFRC material for active control of nonlinear deformations of smart FG structures. The effects of volume fraction index of the FG material of the substrate plates and the locations of the PFRC patches on the control authority of the patches are investigated. Emphasis has also been placed on investigating the effect of variation of piezoelectric fiber orientation angle in the PFRC patches on their actuation capability for counteracting the large deflections of FG plates.  相似文献   

4.
This work addresses a static analysis of functionally graded material (FGM) plates using higher order shear deformation theory. In the theory the transverse shear stresses are represented as quadratic through the thickness and hence it requires no shear correction factor. The material property gradient is assumed to vary in the thickness direction. Mori and Tanaka theory (1973) [1] is used to represent the material property of FGM plate at any point. The thermal gradient across the plate thickness is represented accurately by utilizing the thermal properties of the constituent materials. Results have been obtained by employing a C° continuous isoparametric Lagrangian finite element with seven degrees of freedom for each node. The convergence and comparison studies are presented and effects of the different material composition and the plate geometry (side-thickness, side–side) on deflection and temperature are investigated. Effect of skew angle on deflection and axial stress of the plate is also studied. Effects of material constant n on deflection and the temperature distribution are also discussed in detail.  相似文献   

5.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

6.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

7.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated.  相似文献   

8.
A finite element formulation of the equations governing laminated anisotropic plates using Reddy's higher-order theory is presented. This simple higher-order shear deformable theory takes into account the parabolic distribution of the transverse shear deformation through the thickness of the plate and contains the same unknowns as in the first-order shear deformation theory. Finite element solutions are presented for rectangular plates of different layups, such as cross-ply, antisymmetric angle-ply, and sandwich plates with various material properties, boundaries, and plate aspect ratios. The numerical results are compared with the available closed-form results, the 3-D linear elasticity theory results, and the other available numerical results. A comparison is also made with test data from a laminated cantilever plate.  相似文献   

9.
In this study, the bending solution of simply supported transversely isotropic thick rectangular plates with thickness variations is provided using displacement potential functions. To achieve this purpose, governing partial differential equations in terms of displacements are obtained as the quadratic and fourth order. Then, the governing equations are solved using the separation of variables method satisfying exact boundary conditions. The advantage of the purposed method is that there is no limitation on the thickness of the plate or the way the plate thickness is being varied. No simplifying assumption in the analysis process leads to the applicability and reliability of the present method to plates with any arbitrarily chosen thickness. In order to confirm the accuracy of the proposed solution, the obtained results are compared with existing published analytical works for thin variable thickness and thick constant thickness plate. Also, due to the lack of analytical research on thick plates with variable thickness, the obtained results are verified using the finite element method which shows excellent agreement. The results show that the maximum displacement of the plates with variable thickness is moved from the center toward the thinner plate edge. In addition, results exhibit the profound effects of both thickness and aspect ratio on stress distribution along the thickness of the plate. Results also show that varying thickness has not a profound impact on bending and twisting moments in transversely isotropic plates. Five different materials consist of four transversely isotropic and one isotropic, as a special case, are considered in this paper, which it is shown that the material properties have a more considerable impact on higher thickness plate.  相似文献   

10.
Nonlinear bending analysis is first presented for functionally graded elliptical plates resting on two-parameter elastic foundations, and investigations on FGM elliptical plates with immovable simply supported edge are also new in literature. Material properties are assumed to be temperature-dependent and graded in the thickness direction. The governing equations of a functionally graded plate are based on Reddy’s high-order shear deformation plate theory that includes thermal effects. Ritz method is employed to determine the central deflection-load and bending moment-load curves, the validity can be confirmed by comparison with related researchers’ results, and it is worth noting that the forms of approximate solutions are well-chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, foundation stiffness, ratio of major to minor axis and volume fraction index are discussed in detail.  相似文献   

11.
A ceramic/metal functionally graded circular plate under one-term and two-term transversal excitations in the thermal environment is investigated, respectively. The effects of geometric nonlinearity and temperature-dependent material properties are both taken into account. The material properties of the functionally graded plate are assumed to vary continuously through the thickness, according to a power law distribution of the volume fraction of the constituents. Using the principle of virtual work, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic forcing excitation and thermal load are derived. For the circular plate with clamped immovable edge, the Duffing nonlinear forced vibration equation is deduced using Galerkin method. The criteria for existence of chaos under one-term and two-term periodic perturbations are given with Melnikov method. Numerical simulations are carried out to plot the bifurcation curves for the homolinic orbits. Effects of the material volume fraction index and temperature on the criterions are discussed and the existences of chaos are validated by plotting phase portraits, Poincare maps. Also, the bifurcation diagrams and corresponding maximum Lyapunov exponents are plotted. It was found that periodic, multiple periodic solutions and chaotic motions exist for the FGM plate under certain conditions.  相似文献   

12.
In this study, the static response is presented for a simply supported functionally graded rectangular plate subjected to a transverse uniform load. The generalized shear deformation theory obtained by the author in other recent papers is used. This theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of a functionally graded plate are given based on a generalized shear deformation plate theory. The numerical illustrations concern bending response of functionally graded rectangular plates with two constituent materials. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction distributions are studied. The results are verified with the known results in the literature.  相似文献   

13.
Geometric modeling and numerical analysis of multi-directional FGM (Functionally Graded Material) plate, whose material properties grade continuously both in its thickness and in-plane directions, are increasingly required. In this work, postbuckling behavior of this type of plates with multiple cutouts is, for the first time, numerically investigated through the combination of NURBS-based IGA (IsoGeonetric Analysis) and FCM (Finite Cell Method). The nonlinear deformation of plate is determined by TSDT (Third-order Shear Deformation Theory) and von Kármán nonlinear assumptions without the requirement of SCFs (shear correction factors). Besides, the higher continuity advantage of NURBS basis functions can easily meet the C1-continuous requirement of the displacement field. The main contribution is introducing the FCM to deal with the influence of complex cutouts on the postbuckling characteristics. The geometric interfaces of the cutouts are approached and approximated by adaptive quadrature procedure in the distinguished cut elements. The advantage of this implementation is that the previously tricky process of representing the geometry of perforated plate with multiple NURBS patches can be eliminated, which naturally avoids the imposition of C1-continuity condition across the patch boundaries. The cylinder arc-length method combined with modified Newton–Raphson iteration algorithm, which takes into account of the initial geometric imperfections, is applied to implement geometrically nonlinear stability analysis and track the postbuckling paths. The effectiveness and reliability of the presented method are verified with available solutions of isotropic and conventional perfect FGM plates. Subsequently, a series of factors, including material volume fraction, length-to-thickness ratio, boundary condition, cutout size, etc., affecting the postbuckling responses of multi-directional perforated FGM plates are considered and investigated.  相似文献   

14.
In the present study, a novel exact closed-form procedure based on the third order shear deformation plate theory is developed to analyze in-plane and out-of-plane frequency responses of circular/annular functionally graded material (FGM) plates embedded in piezoelectric layers for both close/open circuit electrical boundary conditions. Introducing a new analytical method, five governing partial deferential equations of motion beside Maxwell electrostatic equation are solved via an exact closed-form method. The high accuracy and reliability of the present approach is confirmed by comparing some of the present data with their counterparts reported in the literature. Finally, the effect of material properties, power law index and boundary conditions on the free vibration of the smart FGM plate are studied and discussed in detail.  相似文献   

15.
This paper presents the mathematical modeling of the nonlinear vibration behavior of a hybrid laminated plate composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Three type symmetric distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane. The distribution of cracks is assumed to be statistically homogeneous corresponding to an average crack density. The obtained partial differential equations are solved by the element-free kp-Ritz method, and the iteration process is dealt with using the linearized updated mode method. Detailed parametric studies are conducted investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on the frequency-amplitude responses of hybrid laminated plates containing CNTR-FG layers.  相似文献   

16.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

17.
In this paper rectangular plates made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGM plates are determined using a variational formulation arising from the Reissner–Mindlin theory. To approximate the problem a simple locking-free Discontinuous Galerkin finite element of non-conforming type is used, choosing a piecewise linear non-conforming approximation for both rotations and transversal displacement. Several numerical simulations are carried out in order to show the capability of the proposed element to capture the properties of plates of various gradings, subjected to thermo-mechanical loads.  相似文献   

18.
An evolutionary method for optimization of plate buckling resistance   总被引:9,自引:0,他引:9  
Optimization of plate buckling resistance is very complicated, because the in-plane stress resultants in the prebuckled state of a plate are functions of thickness distribution. This paper discusses the problem of finding the optimum thickness distribution of isotropic plate structures, with a given volume and layout, that would maximise the buckling load. A simple numerical method using the finite-element analysis is presented to obtain the optimum thickness distribution. Optimum designs of compression-loaded rectangular plates with different boundary conditions and plate aspect ratios are obtained by using the proposed method. Optimum designs from earlier studies and the methods of buckling analysis used to attain these results are discussed and compared with the designs from the proposed method. This paper also examines the reliability of the optimality criterion generally used for plate buckling optimization, which is based on the uniform strain energy density.  相似文献   

19.
基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载 挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载 挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.  相似文献   

20.
Closed-form solutions for free vibration analysis of orthotropic plates are obtained in this paper based on two variable refined plate theory. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the natural frequency of orthotropic plates are investigated and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号