首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The reaction of [Os3Rh(mu-H)3(CO)12] with an excess amount of 4-vinylphenol (as hydride acceptor) in refluxing m-xylene, chlorobenzene or benzene yielded the three new clusters [Os5Rh2(mu-CO){eta6-C6H4(CH3)2}(CO)16] 1, [Os5Rh2(mu-CO)(eta6-C6H5Cl)(CO)16] 2 and [Os5Rh2(mu-CO)(eta6-C6H6)(CO)16] 3. The treatment of [Os3Rh(mu-H)3(CO)12] 4 in refluxing toluene with an excess amount of 4-vinylphenol afforded a new complex, [Os4Rh(mu-H)(eta6-C6H5CH3)(CO)12], which was isolated as a brown complex in 20% yield together with two known compounds, [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] in 10% yield and [Os3Rh4(mu3-eta1:eta1:eta1-C6H5CH3)(CO)13] in 5% yield. Complexes 1-4 were fully characterized by IR, 1H NMR spectroscopy, mass spectroscopy, elemental analysis and X-ray crystallography. The molecular structures of compounds 1-3 are isomorphous, and only differ in the arene-derivatives that attach to the same metal core. Their metal cores can be viewed as a monocapped octahedral, in which an osmium atom caps one of the Os-Os-Os triangular faces of the Os4Rh2 metal framework. Complex 4 has a trigonal-bipyramidal metal core with a C6H5Me ligand that is terminally bound to the Rh atom that lies in the trigonal plane of the metal core. The hydrogenation of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with [Os3(mu-H)2(CO)10] in chloroform under reflux resulted in two hydrogen-rich compounds: [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6, both in moderate yields. The reaction of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with hydrogen in refluxing chloroform yielded a new cluster compound, [Os5Rh(mu-H)5(CO)18] 7, in 20% yield, together with a known osmium-rhodium cluster, [Os6Rh(mu-H)7(mu-CO)(CO)18], as a major compound. Clusters 5, 6, and 7 have been fully characterized by both spectroscopic and crystallographic methods. Additionally, a deuterium-exchange experiment was performed on [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6. Both the compounds proved to be able to exchange the H atom with D in the presence of D2SO4, and the absence of the hydride signal in the 1H NMR spectrum is consistent with this. Therefore, clusters 5 and 6 may serve as appropriate new hydrogen storage models.  相似文献   

2.
para-Nitrobenzaldehyde semicarbazone (O(2)N(para)-C(6)H(4)C(H)=N-NH-CO-NH(2)) undergoes unprecedented chemical transformation during its reaction with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] in different alcoholic (R'OH, R' = CH(2)CH(2)OCH(3), CH(2)CH(3), CH(2)CH(2)CH(3), and CH(2)CH(2)CH(2)CH(3)) solvents whereby the NH(2) group of the semicarbazone ligand is displaced by a OR' group provided by the solvents. The transformed semicarbazone ligand binds to osmium as a bidentate N,O-donor forming five-membered chelate ring to afford complexes of type [Os(PPh(3))(2)(CO)(H)(L-OR')], where L-OR' refers to the transformed semicarbazone ligand. Structure of the [Os(PPh(3))(2)(CO)(H)(L-OCH(2)CH(2)OCH(3))] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(H)(L-OR')] complexes are diamagnetic and show characteristic (1)H NMR signals. They also show intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on the complexes shows an irreversible oxidative response within 0.69-0.88 V versus SCE.  相似文献   

3.
Reaction of 2-(arylazo)phenols (H(2)ap-R; R = OCH(3), CH(3), H, Cl, and NO(2)) with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] affords a family of organometallic complexes of osmium(II) of type [Os(PPh(3))(2)(CO)(ap-R)] where the 2-(arylazo)phenolate ligand is coordinated to the metal center as a tridentate C,N,O-donor. Structure of the [Os(PPh(3))(2)(CO)(ap-H)] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(ap-R)] complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. They also show emission in the visible region at ambient temperature. Cyclic voltammetry on the [Os(PPh(3))(2)(CO)(ap-R)] complexes shows a reversible Os(II)-Os(III) oxidation within 0.39-0.73 V vs SCE, followed by a reversible Os(III)-Os(IV) oxidation within 1.06-1.61 V vs SCE. Coulometric oxidation of the [Os(PPh(3))(2)(CO)(ap-R)] complexes generates the [Os(III)(PPh(3))(2)(CO)(ap-R)](+) complexes, which have been isolated as the hexafluorophosphate salts. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes are one-electron paramagnetic and show axial ESR spectra. In solution they behave as 1:1 electrolytes and show intense LMCT transitions in the visible region. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes have been observed to serve as mild one-electron oxidants in a nonaqueous medium.  相似文献   

4.
[Os5C(CO)14]2- was synthesized on the surface of MgO by reductive carbonylation of adsorbed Os3(CO)12 at 548 K and 1 bar. The supported species were characterized by infrared (IR), 13C NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. The IR and EXAFS data are consistent with the presence of [Os5C(CO)14]2-, formed in a yield of about 65%, along with smaller osmium carbonyl clusters. As the supported clusters were decarbonylated in flowing He or H2, they were characterized by IR and EXAFS spectroscopies, which indicate that the decarbonylation was complete after each treatment at 573 K. The EXAFS data characterizing the sample treated in He determine an Os-Os first-shell coordination number of 3.4, matching that of [Os5C(CO)14]2- and indicating that the Os5C frame was retained after decarbonylation in He. Treatment of MgO-supported [Os5C(CO)14]2- in H2 at 573 K resulted in the formation of aggregated osmium clusters larger than Os5C. The catalytic activity of Os5C for toluene hydrogenation was found to be an order of magnitude less than that of the aggregated osmium clusters, which are metallic in character.  相似文献   

5.
Hsu FC  Tung YL  Chi Y  Hsu CC  Cheng YM  Ho ML  Chou PT  Peng SM  Carty AJ 《Inorganic chemistry》2006,45(25):10188-10196
Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.  相似文献   

6.
The synthesis and characterization of the anionic mononuclear and homobinuclear osmium complexes [AsPh4][OsCl5L].xEtOH [L = H2O, x = 2 (9); L = EtOH, x = 1 (10a); L = py, x = 0 (10b)] and [AsPh4]2[Cl5Os(pyz)OsCl5] (12) (pyz = pyrazine) are described. Upon reduction in a chloride-containing medium, OsO4 (1) affords the osmium(IV) species [OsCl5(H2O)]- (2), which could be isolated by extraction with n-tributyl phosphate (TBP). Complex 9 is the first fully characterized chloroaquo complex of Os(IV). This complex is an effective starting material for the preparation of novel species, such as 10a, 10b, and 12. The X-ray structures of 9 and 10a were determined. Both compounds crystallize in the monoclinic space group P2(1)/n. 9: C28H34AsCl5O3Os, a = 10.910(4) A, b = 17.127(5) A, c = 17.555(7) A, beta = 103.77(2) degrees, V = 3186(2) A3, and Z = 4. 10a: C28H32AsCl5O2Os, a = 10.7762(2) A, b = 17.3939(1) A, c = 17.1477(3) A, beta = 103.645(1) degrees, V = 3123.45(8) A, and Z = 4. Complexes 9 and 10a crystallize with two and one molecule of EtOH and are bonded via hydrogen bridges to the H2O and EtOH ligand in 9 and 10a, respectively.  相似文献   

7.
In an unusual reaction of osmium(VIII) oxide with p-substituted aromatic amines (X-C(6)H(4)-NH(2), where X = Me, H, Cl) in heptane afforded the brown osmium(VI)-oxo complexes [OsO(L)(2)] (1a-c, L = N-aryl-1,2-arylenediamide) in moderate yields. The ligand L is formed in situ via oxidative ortho-C-N fusion of arylamines. The reaction occurs in an inert atmosphere, and a part of Os(VIII) is used up for the oxidation of aromatic amine. Single crystal X-ray structure of a representative complex 1a is solved. The structural analysis has authenticated the ortho-C-N fusion of ArNH(2) resulting in formation of the diamide ligand, L. The complex as a whole is penta-coordinated, and the coordination sphere has a distorted square pyramidal geometry (tau = 0.26). A similar reaction of osmium(VIII) oxide with the preformed N-phenyl-1,2-phenelene diamine produced the complex 1a in nearly quantitative yield. The substituted phenazine, 5-phenyl-3-phenylimino-3,5-dihydro-phenazine-2-ylamine, is obtained as a byproduct of the latter reaction. The complexes, 1a-c, can be reduced in a reversible one-electron step, as probed by cyclic voltammetry. The one electron reduced paramagnetic Os(V) intermediate is, however, Electron Paramagnetic Resonance (EPR) silent. Solution spectra of the osmium complexes show several multiple transitions in the UV-vis region. Density functional theory calculations were employed to confirm the structural features and to support the spectroscopic assignments. The complex 1a catalyzes oxidation of a wide variety of unsaturated hydrocarbons like alkenes, alkynes, and aldehydes to the corresponding carboxylic acids in the presence of tert-butylhydroperoxide (TBHP) efficiently at room temperature.  相似文献   

8.
The interaction between the osmium clusters [Os3(CO)12], [Os3(CO)10(mu-H)2], [Os3(CO)10(mu-H)(mu-OH)], and a series containing a free functional group, viz., [Os3(CO)10(mu-H)(mu-S--EH)] (where -- =alkylwedge chain or an aromatic ring, E=COO, S or O), with SiO2, ZnO and In2O3, was examined by ToF-SIMS and IR spectroscopy. While the interaction with the silica surface is mostly via an O atom or the functional group, the interaction with the ZnO and In2O3 surfaces is more complex.  相似文献   

9.
The dicationic Os(II) complex [Os(bpy)(PPh(3))(2)(CO)(H(2))](2+) has been prepared as the triflate salt. The presence of a bound dihydrogen ligand is indicated by a short T(1) minimum value consistent with an H-H distance of 1.05 ?. In the partially deuterated derivative J(HD) = 25.5 Hz was observed. By comparison to other structurally characterized complexes, the observed H-D coupling is most consistent with a H-H distance greater than 1 ?, which requires that the bound H(2) ligand be in the slow rotation regime. The dicationic complex is a strong acid, indicating that the bound H(2) is substantially activated toward heterolytic cleavage. The H(2) ligand is tightly bound to the metal center, and does not undergo exchange with D(2) over the course of several weeks at room temperature. A related dicationic Os(II) complex, [Os(bpy)(2)(CO)(H(2))](2+), has also been prepared. A short T(1) minimum value and a J(HD) value of 29.0 Hz in the partially deuterated derivative is most consistent with a H-H distance of 0.99 ?. The bound H(2) ligand of this complex is significantly less activated toward heterolytic cleavage and is stable in solution for less than a day at room temperature.  相似文献   

10.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

11.
New benzo[h]quinoline ligands (HCN'N) containing a CHRNH2 (R=H (a), Me (b), tBu (c)) function in the 2-position were prepared starting from benzo[h]quinoline N-oxide (in the case of ligand a) and 2-chlorobenzo[h]quinoline (for ligands b and c). These compounds were used to prepare ruthenium and osmium complexes, which are excellent catalysts for the transfer hydrogenation (TH) of ketones. The reaction of a with [RuCl2(PPh3)3] in 2-propanol at reflux afforded the terdentate CN'N complex [RuCl(CN'N)(PPh3)2] (1), whereas the complexes [RuCl(CN'N)(dppb)] (2-4; dppb=Ph2P(CH2)4PPh2) were obtained from [RuCl2(PPh3)(dppb)] with a-c, respectively. Employment of (R,S)-Josiphos, (S,R)-Josiphos*, (S,S)-Skewphos, and (S)-MeO-Biphep in combination with [RuCl2(PPh3)3] and ligand a gave the chiral derivatives [RuCl(CN'N)(PP)] (5-8). The osmium complex [OsCl(CN'N)(dppb)] (12) was prepared by treatment of [OsCl2(PPh3)3] with dppb and ligand a. Reaction of the chloride 2 and 12 with NaOiPr in 2-propanol/toluene afforded the hydride complexes [MH(CN'N)(dppb)] (M=Ru 10, Os 14), through elimination of acetone from [M(OiPr)(CN'N)(dppb)] (M=Ru 9, Os 13). The species 9 and 13 easily reacted with 4,4'-difluorobenzophenone, via 10 and 14, respectively, affording the corresponding isolable alkoxides [M(OR)(CN'N)(dppb)] (M=Ru 11, Os 15). The complexes [MX(CN'N)(P2)] (1-15) (M=Ru, Os; X=Cl, H, OR; P=PPh3 and P2=diphosphane) are efficient catalysts for the TH of carbonyl compounds with 2-propanol in the presence of NaOiPr (2 mol %). Turnover frequency (TOF) values up to 1.8x10(6) h(-1) have been achieved using 0.02-0.001 mol % of catalyst. Much the same activity has been observed for the Ru--Cl, --H, --OR, and the Os--Cl derivatives, whereas the Os--H and Os--OR derivatives display significantly lower activity on account of their high oxygen sensitivity. The chiral Ru complexes 5-8 catalyze the asymmetric TH of methyl-aryl ketones with TOF approximately 10(5) h(-1) at 60 degrees C, up to 97 % enatiomeric excess (ee) and remarkably high productivity (0.005 mol % catalyst loading). High catalytic activity (TOF up to 2.2x10(5) h(-1)) and enantioselectivity (up to 98 % ee) have also been achieved with the in-situ-generated catalysts prepared from [MCl2(PPh3)3], (S,R)-Josiphos or (S,R)-Josiphos*, and the benzo[h]quinoline ligands a-c.  相似文献   

12.
Trinuclear clusters M3(CO)12(M=Ru and Os) react with 2,3-dihydroxyquinoxaline (DQ) to give M(CO)2 (DQ) (DMSO) products. I.r. and n.m.r. spectroscopy show these complexes are trigonal bipyramidal with the two CO molecules differently bonded to the metal center; axially in the ruthenium complex and equatorially in the osmium complex. Prolonged heating of ruthenium(III) chloride with DQ gave the [Ru(DQ) (DMSO)3]Cl3 complex, the i.r. spectrum of which showed that the ligand is bonded to the metal in the catecholate form.  相似文献   

13.
Cyclometalated osmium complexes with the formulas [Os(ppy) 2(CO) 2] ( 1a, b), [Os(dfppy) 2(CO) 2] ( 2a, b), and [Os(btfppy) 2(CO) 2] ( 3a, b) have been synthesized, for which the chelating chromophores ppyH, dfppyH, and btfppyH denote 2-phenylpyridine, 2-(2,4-difluorophenyl)pyridine, and 2-(2,4-bis(trifluoromethyl)phenyl)pyridine, respectively. The isomers 1a- 3a, possessing an intrinsic C 2 rotational axis as determined by single-crystal X-ray diffraction analysis, underwent slow isomerization in solution at elevated temperature, giving the respective thermodynamic products 1b- 3b, which showed a distinctive coordination arrangement produced by a 180 degrees rotation of one cyclometalated ligand around the Os(II) metal center. In contrast to the case for 1a, b and 2a, which are inert to substitution, complexes 2b and 3b (or 3a) readily react with PPh 2Me to afford the products [Os(dfppy) 2(CO)(PPh 2Me)] ( 4) and [Os(btfppy) 2)(PPh 2Me)] ( 6), in which the incoming PPh 2Me replaced the CO located trans to the carbon atom of one cyclometalated ligand. UV-vis and emission spectra were measured, revealing the lowest excited state for all complexes as a nominally ligand-centered (3)pipi* state mixed with certain MLCT character. Introduction of the electron-withdrawing substituents on the cyclometalated chelates or replacement of one CO ligand with phosphine at the metal center increased the MLCT contribution in the first excited state, giving a broad and featureless emission with greatly enhanced quantum yields.  相似文献   

14.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

15.
Reaction of chloranilic acid (H2ca) with [Os(bpy)2 Br2] (bpy = 2,2'-bipyridine) affords a dinuclear complex of type [{Os(bpy)2}2 (ca)]2+, isolated as the perchlorate salt. A similar reaction of H2ca with [Os(PPh3)2 (pap)Br2] (pap = 2-(phenylazo)pyridine) affords a dinuclear complex of type [{Os(PPh3)2 (pap)}2 (ca)]2+ (isolated as the perchlorate salt) and a mononuclear complex of type [Os(PPh3)2 (pap)(ca)]. Reaction of H2ca with [Os(PPh3)2(CO)2(HCOO)2] gives a dinuclear complex of type [{Os(PPh3)2(CO)2}2 (r-ca)], where r-ca is the two electron reduced form of the chloranilate ligand. The structures of the [{Os(PPh3)2 (pap)}2 (ca)](ClO4)2, [Os(PPh3)2 (pap)(ca)], and [{Os(PPh3)2(CO)2}2 (r-ca)] complexes have been determined by X-ray crystallography. In the [{Os(bpy)2}2 (ca)]2+ and [{Os(PPh3)2 (pap)}2 (ca)]2+ complexes, the chloranilate dianion is serving as a tetradentate bridging ligand. In the [Os(PPh3)2 (pap)(ca)] complex, the chloranilate dianion is serving as a bidentate chelating ligand. In the [{Os(PPh3)2(CO)2}2 (r-ca)] complex, the reduced form of the chloranilate ligand (r-ca(4-)) is serving as a tetradentate bridging ligand. All the four complexes are diamagnetic and show intense metal-to-ligand charge-transfer transitions in the visible region. The [Os(PPh3)2 (pap)(ca)] complex shows an Os(II)-Os(III) oxidation, followed by an Os(III)-Os(IV) oxidation on the positive side of a standard calomel electrode. The three dinuclear complexes show two successive oxidations on the positive side of SCE. The mixed-valent Os(II)-Os(III) species have been generated in the case of the two chloranilate-bridged complexes by coulometric oxidation of the homovalent Os(II)-Os(II) species. The mixed-valent Os(II)-Os(III) species show intense intervalence charge-transfer transitions in the near-IR region.  相似文献   

16.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

17.
Chiu TW  Liu YH  Chi KM  Wen YS  Lu KL 《Inorganic chemistry》2005,44(18):6425-6430
Three novel triosmium complexes with unusual coordination characteristics are reported. Treatment of the hydridotriosmium cluster (mu-H)2Os3(CO)10 with CNNPPh3 in CH2Cl2 gave complexes (mu-H)Os3(CO)(10)(mu2-eta2-C(H)NNPPh3) (1) and (mu-H)Os3(CO)10(mu2-eta1-CHPPh3) (2). Complex 1 represents the first example of the existence of a coordinated phosphinazine ligand. An in-situ 1H NMR study showed that the reaction of (mu-H)2Os3(CO)10 with CNNPPh3 produced complex 1 as the initial product in 100% conversion. The latter is not stable in solution and slowly eliminates nitrogen to form an unusual ylide complex 2 in quantitative yield. The thermolysis of 2 in refluxing toluene afforded (mu-H)3Os3(CO)9(mu3-eta1-CCO2CH2Ph) (3) as a colorless compound. Complexes 1-3 were characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. The interesting feature of structure 3 is the presence of a mu3-alkylidyne ligand where the symmetrically triply bridged CCO2CH2Ph fragment lies perpendicular to and above the triosmium triangle.  相似文献   

18.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

19.
The reaction of N-arylpyridine-2-carboxaldimine [C(5)H(4)NC(H)NC(6)H(4)R] (HL) with ammonium hexabromoosmate (NH(4))(2)[OsBr(6)] in boiling 2-methoxyethanol afforded a violet solution from which two geometrical isomers of [OsBr(2)(HL)(2)] (1 and 2) were isolated. These are characterized by analytical and spectroscopic data. (1)H NMR spectral data were used for the identification of the isomers. The blue-violet isomer, 1 (designated as ctc), has a 2-fold symmetry axis and gave rise to resonances for only one coordinated HL. The geometry of the ctc-isomer was, however, revealed from the X-ray structure determination of a representative example. The red-violet isomer (2, designated as ccc), on the other hand, is unsymmetrical and gave rise to a large number of proton resonances. The isomeric complexes, [OsBr(2)(HL)(2)], showed intense MLCT transitions in the visible region. This transition, in the ccc-isomer, is slightly (10 nm) red shifted in comparison to the ctc-isomer. These diimine complexes showed one metal based reversible oxidation assignable to the Os(III)/Os(II) process followed by two irreversible oxidations at more anodic potentials (>1.4 V). In addition to these, the complexes also showed two irreversible ligand reductions at high cathodic potentials (<-1.4 V). An unusual type of photochemical transformation of the azomethine function of coordinated HL in osmium compounds 1 is studied. When an air equilibrated acetonitrile solution of 1 was exposed to a xenon lamp, it underwent oxidation affording the mixed ligand, amido complexes of general formula [OsBr(2)(HL)(LO)], 3 (LO = C(5)H(4)NC(O)-N-C(6)H(4)R), in an excellent yield (>95%). This transformation (1 --> 3) was achieved chemically when H(2)O(2) was used as an oxidant. Notably, the chemical oxidation with H(2)O(2) also led to the formation of a tetravalent complex, [OsBr(2)(LO)(2)], 4, as a minor product. Compound 3 was characterized by various spectroscopic and analytical techniques. The room temperature magnetic moment of 3 corresponds to a t(2)(5) configuration for the osmium(III) center. EPR spectra of the amido complexes were recorded at 77 K in 1:1 dichloromethane-toluene glass, and they were anisotropic in nature. FAB mass spectra of 3 displayed intense peaks due to parent molecular ions. For example, the complex [OsBr(2)(HL(1))(L(1)O)], 3a, showed a strong peak at m/z 729 amu. The electronic spectrum of compound 3 consisted of a broad LMCT transition (ca. 525 nm; epsilon, 3000 M(-1) cm(-1)). The cyclic voltammogram of compound 3 consisted of two responses, one each on the positive and negative side of SCE, corresponding to Os(IV)/Os(III) (ca. 0.8V) and Os(III)/Os(II) (ca. -0.3V) couples, respectively. There has been a large cathodic shift of potential for the Os(III)/Os(II) couple in 3 in comparison to that in the parent complex, 1. The diamido compound [OsBr(2)(LO)(2)], 4, is diamagnetic and insoluble in common solvents. The X-ray structure determination of a representative sample, 4a, is reported. The molecule contains a C(2)-symmetry axis with bromide ions in relative cis positions. The Os-N(amide) bond lengths are considerably shorter than the Os-N(pyridine) lengths. All other bond lengths and angles fall within the expected range.  相似文献   

20.
We have prepared and characterized a series of osmium complexes [Os2(CO)4(fpbpy)2] ( 1 ), [Os(CO)(fpbpy)2] ( 2 ), and [Os(fpbpy)2] ( 3 ) with tridentate 6‐pyrazol‐3‐yl 2,2′‐bipyridine chelating ligands. Upon the transformation of complex 2 into 3 through the elimination of the CO ligand, an extremely large change in the phosphorescence wavelength from 655 to 935 nm was observed. The results are rationalized qualitatively by the strong π‐accepting character of CO, which lowers the energy of the osmium dπ orbital, in combination with the lower degree of π conjugation in 2 owing to the absence of one possible pyridine‐binding site. As a result, the energy gap for both intraligand π–π* charge transfer (ILCT) and metal‐to‐ligand charge transfer (MLCT) is significantly greater in 2 . Firm support for this explanation was also provided by the time‐dependent DFT approach, the results of which led to the conclusion that the S0→T1 transition mainly involves MLCT between the osmium center and bipyridine in combination with pyrazolate‐to‐bipyridine 3π–π* ILCT. The relatively weak near‐infrared emission can be rationalized tentatively by the energy‐gap law, according to which the radiationless deactivation may be governed by certain low‐frequency motions with a high density of states. The information provided should allow the successful design of other emissive tridentate metal complexes, the physical properties of which could be significantly different from those of complexes with only a bidentate chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号