首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3]+ (MeGlyH+) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonites [high‐purity montmorillonite (MMT)‐MeGlyH+] had larger interlayer spacing (12.69 Å) than montmorillonites without treatment (9.65 Å). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT‐MeGlyH+] had much higher Zr loading and higher activities than those of other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT‐MeGlyH+, Cp2ZrCl2/MAO/MMT, [Cp2ZrCl]+[BF4]/MMT, [Cp2ZrCl]+[BF4]?/MMT‐MeGlyH+, [Cp2ZrCl]+[BF4]?/MAO/MMT‐MeGlyH+, and [Cp2ZrCl]+[BF4]?/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (Cp2ZrCl2/MAO/MMT‐MeGlyH+). MeGlyH+ and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1892–1898, 2002  相似文献   

2.
The polymerization kinetics of propene polymerization using metallocene/methylaluminoxane (MAO) homogeneous catalysts have been investigated to explore the role of donor/acceptor interactions and to enhance the catalyst productivities. In the case of the non-stereospecific Cp2ZrCl2/MAO model system it has been demonstrated that, in addition to the well known irreversible deactivation, reversible deactivations, which are second order relative to the zirconium active site concentration, account for the decay of the polymerization rate. While MAO injection during polymerization enhances the polymerization rate, zirconocene addition deactivates the catalyst which can be reactivated by injecting additional MAO. A sequence of dynamic equilibria involving the formation of active cationic metallocene intermediates as well as inactive zirconocene species, e.g., zirconocene dimers, is proposed. Lewis base and Lewis acid additives have been added as probes to examine the role of such equilibria in the case of metallocene-based catalyst systems such as MAO-activated Cp2ZrCl2, racemic ethylenebisindenyl zirconium dichloride (EBIZrCl2), and racemic ethylenebis (4,5,6,7-tetrahydroindenyl) zirconium dichloride (EBTHIZrCl2). While the conventional donors such as 2,6-ditert.butyl-4-methylphenol (BHT) and 2,2,6,6-tetramethylpiperidine (TMP) reduce catalyst productivities, even at very low donor/Al molar ratios, increasing propene concentration and addition of trimethylboroxine (TMB) substantially enhance catalyst productivities and affect molecular weights of the polypropylene produced with metallocene/MAO catalysts.  相似文献   

3.
The heterogeneous bis(cyclopentadienyl)zirconium(IV) dichloride catalyst of the composition MgCl2(THF)/(AlEt2Cl)0.34/(Cp2ZrCl2)0.01 as determined by FTIR, XRD, and AAS analyses was synthesised and, after activation by MAO, applied for ethylene polymerisation. The catalyst turned out to be stable and more active than those magnesium supported catalysts already known from the literature. The polyethylene produced has a relatively high molecular weight (Mw > 200,000 g/mol), a narrow and monomodal molecular weight distribution (MWD = 2.4), a bulk density of about 180 g/dm3, and monomodal particle size distribution. Application of a ternary Al(i-Bu)3/MAO/B(C6F5)3 activator decreased the amount of MAO needed and increased catalyst activity, but did not change the reaction mechanism.  相似文献   

4.
The oligomerization and polymerization of 1‐pentene using Cp2ZrCl2, Cp2HfCl2, [(CH3)5C5]2ZrCl2, rac‐[C2H4(Ind)2]ZrCl2, [(CH3)2Si(Ind)2]ZrCl2, (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2, Cp2ZrCl{O(Me)CW(CO)5}, Cp2ZrCl(OMe) and methylaluminoxane (MAO) has been studied. The degree of polymerization was highly dependent on the metallocene catalyst. Oligomers ranging from the dimer of 1‐pentene to polymers of poly‐1‐pentene with a molar mass Mw = 149000 g/mol were formed. Cp2ZrCl{O(Me)CW(CO)5} is a new highly active catalyst for the oligomerization of 1‐pentene to low molecular weight products. The activity decreases in the order Cp2ZrCl{O(Me)CW(CO)5} > Cp2ZrCl2 > Cp2ZrCl(OMe). Furthermore, poly‐1‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene were synthesized with (CH3)2Si(2‐methyl‐benz[e]indenyl)2ZrCl2 and methylaluminoxane (MAO) at different temperatures. The temperature dependence of the molar mass can be described by a common exponential decay function irrespective of the investigated monomer.  相似文献   

5.
Propene was polymerized at 40°C and 2-bar propene in toluene using methylalumoxane (MAO) activated rac-Me2Si(Benz[e]Indenyl)2ZrCl2 ( BI ) and rac-Me2Si(2-Me-Benz[e]Indenyl)2ZrCl2 ( MBI ). Catalyst BI /MAO polymerizes propene with high activity to afford low molecular weight polypropylene, whereas MBI /MAO is less active and produces high molecular weight polypropylene. Variation of reaction conditions such as propene concentration, temperature, concentration of catalyst components, and addition of hydrogen reveals that the lower molecular weight polypropylene produced with BI /MAO results from chain transfer to propene monomer following a 2,1-insertion. A large fraction of both metallocene catalyst systems is deactivated upon 2,1-insertion. Such dormant sites can be reactivated by H2-addition, which affords active metallocene hydrides. This effect of H2-addition is reflected by a decreasing content of head-to-head enchainment and the formation of polypropylene with n-butyl end groups. Both catalysts show a strong dependence of activity on propene concentration that indicates a formal reaction order of 1.7 with respect to propene. MBI /MAO shows a much higher dependence of the activity on temperature than BI /MAO. At elevated temperatures, MBI /MAO polymerizes propene faster than BI /MAO. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
By treating cyclodextrin(CD) with methylaluminoxane (MAO such as PMAO or MMAO) or trimethylaluminium (TMA) followed by Cp2ZrCl2, CD/PMAO/Cp2ZrCl2, CD/MMAO/Cp2ZrCl2 and CD/TMA/Cp2ZrCl2 catalysts were prepared. The catalysts were analyzed by 13C-CP/MAS NMR spectrometer and ICP to examine the structure of catalyst and content of Zr and Al. Ethylene polymerization was conducted with MAO or TMA as cocatalyst. Styrene polymerization was also carried out with α-CD/MMAO/Cp*TiCl3 and α-CD/TMA/Cp*TiCl3 catalysts. While the ordinary trialkylaluminium such as TMA as well as MAO can be used as cocatalyst for ethylene polymerization, only MAO could initiate the styrene polymerization with α-CD supported catalysts.  相似文献   

7.
Two supported metallocene catalysts (CS 1: PQ 3030/MAO/Cp2ZrCl2 and CS 2: PQ 3030‐BuGeCl3/MAO/Cp2 ZrCl2) were prepared by sequentially loading MAO and Cp2ZrCl2 on partially dehydroxylated silica PQ 3030. In catalyst CS 2, nBuGeCl3 was used to functionalize the silica. These catalysts were characterized by DR‐FTIR spectroscopy, CPMAS NMR spectroscopy, and XPS. Their catalytic performance was evaluated by polymerizing ethylene using the MAO cocatalyst and characterizing the resulting polymers by GPC. Both catalysts produced two metallocenium cations (Cation 1: [Cp2ZrCl]+ and Cation 2: [Cp2ZrMe]+) with comparable equilibrium concentrations and showed varying solid‐state electronic environments. The modified supports (PQ 3030/MAO and PQ 3030‐BuGeCl3/MAO) acted as weakly coordinating polyanions and stabilized the above cations. BuGeCl3 did not affect the solid‐state electronic environment. However, it increased the surface cocatalyst to catalyst molar ratio (Al:Zr), acted as a spacer, increased catalyst activity, and enhanced chain‐transfer reactions. The separately fed MAO cocatalyst shifted the equilibrium between Cation 1 and Cation 2 toward the right. Consequently, more Cation 2 was generated, which acted as the effective and active single‐site catalytic species producing monomodal PDI. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
本文研究了Cp2ZrH2与CS2、RNCS(R=n-Bu,c-C6H11,C6H5,2-C10H7)和Cp2HfH2与c-C6H11NCS的反应,探讨了在这类新型脱硫反应中锆氢与铪氢配合物化学反应性能上的差异.从以上反应中分  相似文献   

9.
The study of ethylene/1‐hexene copolymerization with the zirconocene catalyst, bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2)/methylaluminoxane (MAO), anchored on a MgCl2(THF)2 support was carried out. The influence of 1‐hexene concentration in the feed on catalyst productivity and comonomer reactivity as well as other properties was investigated. Additionally, the effect of support modification by the organoaluminum compounds [(MAO, trimethlaluminum (AlMe3), or diethylaluminum chloride (Et2AlCl)] on the behavior of the MgCl2(THF)2/Cp2ZrCl2/MAO catalyst in the copolymerization process and on the properties of the copolymers was explored. Immobilization of the Cp2ZrCl2 compound on the complex magnesium support MgCl2(THF)2 resulted in an effective system for the copolymerization of ethylene with 1‐hexene. The modification of the support as well as the kind of organoaluminum compound used as a modifier influenced the activity of the examined catalyst system. Additionally, the profitable influence of immobilization of the homogeneous catalyst as well as modification of the support applied on the molecular weight and molecular weight distribution of the copolymers was established. Finally, with the successive self‐nucleation/annealing procedure, the copolymers obtained over both homogeneous and heterogeneous metallocene catalysts were heterogeneous with respect to their chemical composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2512–2519, 2004  相似文献   

10.
 This article gives an overview of recent chemistry based on the tris-acetonitrile complex [RuCp(CH3CN)3]+. Due to the labile nature of the CH3CN ligands, substitution reactions are a dominant feature of this complex. Important derivatives are the highly reactive complexes [RuCp(PR 3)(CH3CN)2]+ which are a source of the 14e fragment [RuCp(PR 3)]+. These species are catalytically active in the redox isomerization of allyl alcohols to give aldehydes and ketones. Furthermore, the cationic complex [RuCp1(P),η2-PPh2CH2CH2CH*CH2)(CH3CN)]PF6 derived from the reaction of [RuCp(CH3CN)3]+ with PPh2CH2CH2CH*CH2 is a model compound for studying coupling reactions of olefins and acetylenes. In addition, [RuCp(CH3CN)3]+ is a valuable precursor for the synthesis of configurationally stable chiral three-legged piano-stool ruthenium complexes. These are currently being intensively investigated as Lewis acid catalysts in asymmetric synthesis.  相似文献   

11.
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for the impregnation of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO(methylaluminoxane)/SMB catalyst was applied to the ethylene-hexene copolymerization under the conditions of variable Al(MAO)/Zr ratio and fixed Al(TEA, triethylaluminum)/Ti ratio. The effect of Al(MAO)/Zr ratio on the physical properties and chemical composition distributions of ethylene-hexene copolymers produced by a rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was investigated. The catalytic activity of rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB was steadily increased with increasing Al(MAO)/Zr ratio from 200 to 500. The ethylene-hexene copolymer produced with Al(MAO)/Zr = 300, 400, and 500 showed two melting points at around 110 °C and 130 °C, while that produced with Al(MAO)/Zr = 200 showed one melting point at 136 °C. The number of chemical composition distribution (CCD) peaks was increased from 4 to 7 and the short chain branches of ethylene-hexene copolymer were distributed over lower temperature region with increasing Al(MAO)/Zr ratio. The lamellas in the copolymer were distributed over lower temperature region and the small lamellas in the copolymer were increased with increasing Al(MAO)/Zr ratio. The rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced a ethylene-hexene copolymer with non-blocky sequence ([EHE]) with increasing Al(MAO)/Zr ratio.  相似文献   

12.
13.
The preparation and characterization of the substituted bis(cyclopentadienyl) zirconium dichloride complexes (η5-C5H4CMe2C9H7)2ZrCl2 (1a, b) is reported. The isomer mixture of 1a, b was treated with different reducing agents such as sodium and n-butyllithium under various reaction conditions. In these reactions CC and CH activation and cleavage reactions were observed. In combination with methylaluminoxane (MAO) 1a, b and 3 showed low activities as homogeneous ethylene polymerization catalysts and no activities towards propylene. Compounds 2 and 3 were characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

14.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

15.
Regioselectivity of the reactions of lithium vinyl- and isopropenylcyclopentadienides C5H4C(R)=CH2 -Li+(R = H, Me) and lithium tetramethylvinylcyclopentadienide C5Me4CH=CH2 -Li+ with various electrophilic agents (Me3SiCl, Me3SnCl, Et2PCl, 2-chloro-1, 3-dioxaphospholane, and MeI) was studied. Two new monocyclopentadienyl zirconium complexes, [C5H4C(Me) = CH2]ZrCl3 · 2THF and [C5Me4CH=CH2]ZrCl3 · 2THF, were synthesized. Their crystal structures were established by X-ray diffraction. The results of quantum chemical calculations for the C5H4C(R) = CH2 - (R = H, Me) and C5Me4CH=CH2 - anions by the DFT method (RMPW1PW91) with the 6-311+G(d, p) split valence basis set are in good agreement with experimental data on the regioselectivity of their reactions with electrophilic agents.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 390–399, February, 2005.  相似文献   

16.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

17.
The compositional heterogeneity of ethylene-1-hexene copolymers synthesized with various types of supported catalysts, namely, the titanium-magnesium catalyst TiCl4/MgCl2 and the zirconocene catalyst SiO2(MAO)/Me2Si(Ind)2ZrCl2, is studied via the method of successive self-nucleation-annealing (SSA) with the use of differential scanning calorimetry. On the basis of the data on the temperatures of individual peaks on SSA curves, the thickness of lamellas composed of macromolecules with a certain degree of short-chain branching is estimated. The copolymer synthesized with the zirconocene catalyst has a narrower range of fusion and does not contain large lamellas composed of molecules with a low degree of short-chain branching. With the use of the broadness index, it is shown that the copolymer synthesized with the zirconocene catalyst has a more uniform distribution of the comonomer than does the copolymer synthesized with the titanium-magnesium catalyst. For the copolymers synthesized with the titanium-magnesium catalyst, the compositional heterogeneity increases with an increase in the content of 1-hexene.  相似文献   

18.
Using two different zirconocene/MAO catalyst systems, propene was copolymerized with the comonomers 2‐(9‐decene‐1‐yl)‐1,3‐oxazoline and 2‐(4‐(10‐undecene‐1‐oxo)phenyl)‐1,3‐oxazoline, respectively. The catalysts used were rac‐Et[Ind]2ZrCl2 and rac‐Me2Si[2‐Me‐4, 5‐BenzInd]2ZrCl2. Up to 0.53 mol‐% oxazoline could be incorporated into polypropene. Oxazoline content, molecular weight, degree of isotacticity and melting behavior were dependent on the catalyst system, comonomer structure and comonomer concentration in the feed.  相似文献   

19.
The synthesis of [TiInd(NCtBu2)Cl2] and the applications of [TiCp(NCtBu2)Cl2] (Cp=Ind, Cp*, Cp) as ethylene and propylene homopolymerisation catalysts, as well as its behaviour as catalysts of ethylene and 10-undecen-1-ol copolymerisation are described. The optimisation of the catalytic reactions showed that all compounds are very active homopolymerisation catalysts, particularly [TiInd(NCtBu2)Cl2] that gives 123.37 × 106 g/(molTi [E] h) and 50.77 × 106 g/(molTi [P] h) of linear polyethylene and atatic polypropylene, respectively. The less active homopolymerisation catalyst, [TiCp(NCtBu2)Cl2], is the most effective ethylene/10-undecen-1-ol copolymerisation catalyst, leading to the highest degree of polar monomer incorporation. The polymers obtained were characterised by NMR and DSC. The molecular structures of [TiCp(NCtBu2)Cl2] (Cp=Ind, Cp*) were determined by X-ray diffraction studies.  相似文献   

20.
Density functional theory was used to study gas-phase reactions between the Cp2*ZrMe+ cations, where Cp* = C5H5 (1), Me5Cp = C5Me5 (2), and Flu = C13H9 (3), and the ethylene molecule, Cp2*ZrMe+ + C2H4 → Cp2*ZrPr+ → Cp2*ZrAllyl+ + H2. The reactivity of the Cp2*ZrMe+ cations with respect to the ethylene molecule decreased in the series 1 > 32. Substitution in the Cp ring decreased the reactivity of the Cp2*ZrMe+ cations toward ethylene, in agreement with the experimental data on the comparative reactivities of complexes 1 and 3. The two main energy barriers along the reaction path (the formation of the C-C bond leading to the primary product Cp2*ZrPr+ and hydride shift leading to the secondary product Cp2*Zr(H2)Allyl+) vary in opposite directions in the series of the compounds studied. For Flu (3), these barriers are close to each other, and for the other compounds, the formation of the C-C bond requires the overcoming of a higher energy barrier. A comparison of the results obtained with the data on the activity of zirconocene catalysts in real catalytic systems for the polymerization of ethylene led us to conclude that the properties of the catalytic center changed drastically in the passage from the model reaction in the gas phase to real catalytic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号