首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements are reported of the effects of 0-23 mT applied magnetic fields on the spin-selective recombination of Py*- and DMA*+ radicals formed in the photochemical reaction of pyrene and N,N-dimethylaniline. Singlet <--> triplet interconversion in [Py*- DMA*+] radical pairs is probed by investigating combinations of fully protonated and fully deuterated reaction partners. Qualitatively, the experimental B1/2 values for the four isotopomeric radical pairs agree with predictions based on the Weller equation using known hyperfine coupling constants. The amplitude of the "low field effect" (LFE) correlates well with the ratio of effective hyperfine couplings, aDMA/aPy. An efficient method is introduced for calculating the spin evolution of [Py*- DMA*+] radical pairs containing a total of 18 spin-1/2 and spin-1 magnetic nuclei. Quantitative analysis of the magnetic field effects to obtain the radical re-encounter probability distribution f (t )-a highly ill-posed and underdetermined problem-is achieved by means of Tikhonov and maximum entropy regularization methods. The resulting f (t ) functions are very similar for the four isotopomeric radical pairs and have significant amplitude between 2 and 10 ns after the creation of the geminate radical pair. This interval reflects the time scale of re-encounters that are crucial for generating the magnetic field effect. Computer simulations of generalized radical pairs containing six spin-1/2 nuclei show that Weller's equation holds approximately only when the radical pair recombination rate is comparable to the two effective hyperfine couplings and that a substantial LFE requires, but is not guaranteed by, the condition that the two effective hyperfine couplings differ by more than a factor of 5. In contrast, for very slow recombination, essentially any radical pair should show a significant LFE.  相似文献   

2.
Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.  相似文献   

3.
Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) study of hypoxanthine.HCl.H(2)O crystals irradiated at low temperatures (10 K) identified three radical species. In these crystals, the parent molecules exist in a cationic form with a proton at N7. R1 was the product of net hydrogen addition to N3 and exhibited alpha-proton hyperfine couplings to HC2, HN1, HC8, and HN3. The coupling to HC2 has an isotropic component smaller than usual, evidently an indication that the bonds to C2 are nonplanar. R2 was the product of net hydrogen loss from N7, equivalent to the one-electron oxidation product of neutral hypoxanthine, and exhibited alpha-proton hyperfine couplings to HC2 and HC8. Both couplings are characteristic of planar bonding arrangements at the centers of spin. R3 was provisionally identified as the product of net hydrogen addition to O6 and exhibited hyperfine alpha-proton couplings to HC8 and NH1. To identify the set of radicals, the experiments employed four crystal types: normal, deuterated only at NH positions, deuterated at HC8 and NH positions, and deuterated at HC8 only. The low-temperature data also showed clear evidence for H/D isotope effects in formation and/or stabilization of all radicals. To aid and support the identifications, the experimental results were compared to DFT calculations performed on a variety of radical structures plausible for the parent molecule and molecular packing within the crystal.  相似文献   

4.
Relative values of the 1H and 13C isotropic hyperfine couplings in the cationic oxidized tryptophan radical TrpH*+ in aqueous solution are determined. The data are obtained from the photo-CIDNP (chemically induced dynamic nuclear polarization) enhancements observed in the microsecond time-resolved NMR spectra of the diamagnetic products of photochemical reactions in which TrpH*+ is a transient intermediate. The method is validated using the tyrosyl neutral radical Tyr*, whose 1H and 13C hyperfine couplings have previously been determined by electron paramagnetic resonance spectroscopy. Good agreement is found with hyperfine coupling constants for TrpH*+ calculated using density functional theory methods but only if water molecules are explicitly included in the calculation.  相似文献   

5.
This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G*+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2'-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation radical, G*+ (pH 3-5), singly deprotonated species, G(-H)* (pH 7-9), and doubly deprotonated species, G(-2H)*- (pH > 11), are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N-substituted derivatives at N1, N2, and N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G*+, G(-H)*, and G(-2H)*-. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)*. Using the B3LYP/6-31G(d) method, the geometries and energies of G*+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)* and G(N2-H)*, were investigated. In a nonhydrated state, G(N2-H)* is found to be more stable than G(N1-H)*, but on hydration with seven water molecules G(N1-H)* is found to be more stable than G(N2-H)*. The theoretically calculated hyperfine coupling constants (HFCCs) of G*+, G(N1-H)*, and G(-2H)*- match the experimentally observed HFCCs best on hydration with seven or more waters. For G(-2H)*-, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until nine or 10 waters of hydration are included.  相似文献   

6.
The effects of simultaneously applied weak static and weak radio frequency magnetic fields on the recombination of transient (<100 ns) radical pairs have been investigated using a low-field optically detected electron paramagnetic resonance technique. Measurements on the photoinduced electron-transfer reaction of perdeuterated pyrene with 1,3-dicyanobenzene using a approximately 0.3 mT radio frequency field at three separate frequencies (5, 20, and 65 MHz) in the presence of 0-4 mT static fields yield spectra that are strikingly sensitive to the frequency of the time-dependent field, to the strength of the static field, and to the relative orientation of the two fields. The spectra are simulated using a modified form of the gamma-COMPUTE algorithm originally devised for calculating magic angle spinning NMR spectra of polycrystalline samples. The essential features of the spectra are consistent with the radical pair mechanism and were satisfactorily simulated using parameters whose values are either known independently or for which estimates are readily available. The calculations included hyperfine couplings to four deuterons in the pyrene cation radical and three protons in the 1,3-dicyanobenzene anion radical. Spin-selective recombination was modeled using an exponential distribution of radical encounter times. The results are discussed in the context of the proposal that radical pair chemistry forms the basis of the magnetoreceptor that allows birds to sense the Earth's magnetic field as a source of compass information during migration.  相似文献   

7.
The spin dynamics of the radical pair generated from the photocleavage reaction of (2,4,6-trimethylbenzoyl)diphenylphosphine oxide (TMDPO) in micellar solutions was studied by the time-resolved magnetic field effect (MFE) on the transient absorption (TA) and by a novel technique, absorption detected switched external magnetic field (AD-SEMF). Thanks to the large hyperfine coupling constant (A = 38 mT), a characteristic negative MFE on the radical yield was observed at a magnetic field lower than 60 mT whereas a positive effect due to the conventional hyperfine (HFM) and relaxation mechanisms (RM) was observed at higher magnetic field. The negative effect can be assigned to the mechanism "so-called" low field effect (LFE) mechanism and has been analyzed thoroughly using a model calculation incorporating a fast spin dephasing process. The time scale of the spin mixing process of LFE studied by AD-SEMF is shorter than the lifetime of the recombination kinetics of the radical pair. These results indicate that the LFE originates from the coherent spin motion. This can be interfered from the fast spin dephasing caused by electron spin interaction fluctuations.  相似文献   

8.
Anisotropic electron spin resonance (ESR) spectra are reported for the radical anions of hexafluorocyclopropane (c-C(3)F(6)(-)), octafluorocyclobutane (c-C(4)F(8)(-)), and decafluorocyclopentane (c-C(5)F(10)(-)) generated via gamma-irradiation in plastically crystalline tetramethylsilane (TMS) and rigid 2-methyltetrahydrofuran (MTHF) matrices. By combining the analysis of these experimental ESR spectra involving anisotropic hyperfine (hf) couplings with a series of quantum chemical computations, the geometrical and electronic structure of these unusual perfluorocycloalkane radical anions have been characterized more fully than in previous studies that considered only the isotropic couplings. Unrestricted Hartree-Fock (UHF) computations with the 6-311+G(d,p) basis set predict planar ring structures for all three radical anions, the ground electronic states being (2)A(2)(") for c-C(3)F(6)(-) (D(3h) symmetry), (2)A(2u) for c-C(4)F(8)(-) (D(4h)), and (2)A(2)(") for c-C(5)F(10)(-) (D(5h)), in which the respective six, eight, and ten 19F-atoms are equivalent by symmetry. A successful test of the theoretical computation is indicated by the fact that the isotropic 19F hf couplings computed by the B3LYP method with the 6-311+G(2df,p) basis set for the optimized geometries are in almost perfect agreement with the experimental values: viz., 19.8 mT (exp) vs 19.78 mT (calc) for c-C(3)F(6)(-); 14.85 mT (exp) vs 14.84 mT (calc) for c-C(4)F(8)(-); 11.6 mT (exp) vs 11.65 mT (calc) for c-C(5)F(10)(-). Consequently, the same computation method has been applied to calculate the almost axially symmetric anisotropic 19F hf couplings for the magnetically equivalent 19F atoms: (-4.90 mT, -4.84 mT, 9.75 mT) for c-C(3)F(6), (-3.54 mT, -3.48 mT, 7.02 mT) for c-C(4)F(8)(-), and (-2.62 mT, -2.56 mT, 5.18 mT) for c-C(5)F(10)(-). ESR spectral simulations performed using the computed principal values of the hf couplings and the spatial orientations of the 19F nuclei as input parameters reveal an excellent fit to the experimental anisotropic ESR spectra of c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-), thereby providing a convincing proof of the highly symmetric D(nh) structures that are predicted for these negative ions. Furthermore, using the computed 19F principal values and their orientations, the effective 19F anisotropic hf couplings along the molecular symmetry axes were evaluated for c-C(3)F(6)(-) and c-C(4)F(8)(-) and successfully correlated with the positions of the characteristic outermost features in both the experimental and calculated anisotropic spectra. In addition, the electronic excitation energies and oscillator strengths for the c-C(3)F(6)(-) , c-C(4)F(8)(-), and c-C(5)F(10)(-) radical anions were computed for the first time using time-dependent density functional theory (TD-DFT) methods.  相似文献   

9.
Single crystals of the phosphorylated amino acid L-O-serine phosphate were X-irradiated and studied at 10 K and at 77 K using EPR, ENDOR, and EIE techniques. Two radicals, R1(10 K) and R1(77 K), were detected and characterized as two different geometrical conformations of the protonated reduction product >CH-C(OH)(2). R1(10 K) is only observed after irradiation at 10 K, and upon heating to 40 K, R1(10 K) transforms rapidly and irreversibly into R1(77 K). The transition from R1(10 K) to R1(77 K) strongly increases the isotropic hyperfine coupling of the C-CH(beta) coupling (Delta = 32 MHz) and the major C-OH(beta) coupling (Delta = 47 MHz), in sharp contrast to the their much reduced anisotropic hyperfine couplings after the transition. An umbrella-like inversion of the carboxylic acid center, accompanied by minor geometrical adjustments, explains the changes of these observed isotropic and anisotropic couplings. DFT calculations were done on the reduced and protonated L-O-serine phosphate radical at the B3LYP/6-311+G(2df,p)//B3LYP/6-31+G(d) level of theory in order to support the experimental observations. Two different conformations of the anion radical, related by an inversion at the carboxylic center, could be found within the single molecule partial energy-optimization scheme. These two conformations reproduce the experimental hyperfine couplings from radicals R1(10 K) and R1(77 K). A third radical, radical R2, was observed experimentally at both 10 and 77 K and was shown to be due to the decarboxylated L-O-serine phosphate oxidation product, a conclusion fully supported from the DFT calculations. Upon thermal annealing from 77 to 295 K, radicals R1(77 K) and R2 disappeared and all three previously observed room-temperature radicals could be observed. No phosphate-centered radicals could be observed at any temperatures, indicating that the phosphate-ester bond break for one of the room-temperature radicals does not occur by dissociative electron capture at the phosphate group.  相似文献   

10.
Magnetic field effects on the charge-transfer (CT) fluorescence of a 1,2,4,5-tetracyanobenzene-doped poly(N-vinylcarbazole) thin film were investigated to clarify the primary process in photoconductive organic amorphous solid. The CT fluorescence increased with increasing magnetic field until 10 mT, and then it showed the dip around 40-50 mT. The hyperfine coupling mechanism observed in the low field and the level-crossing mechanism observed around 46 mT clearly indicate that the spin-conservative stepwise hole hops take place in the films. The boundary distance determined from the simulation based on the stepwise hopping model almost agreed with the interionic separation estimated within the Onsager analysis.  相似文献   

11.
Multiple resonance spectra were obtained from the radical anion of perfluoro-4,4′-bipyridyl in tetrahydrofuran with potassium as counterion. Fluorine absorptions were observed in the ENDOR spectrum with hyperfine coupling constants of 0.596 and 0.105 mT. A general TRIPLE experiment showed them to be opposite in sign in contrast to the 1H hyperfine coupling constants of the unsubstituted radical anion. INDO calculations were used to explain this change in sign of the hyperfine coupling and to aid in the assignment.  相似文献   

12.
Quantum chemical calculations have been carried out to understand better solvent effects on the isotropic muon and proton hyperfine coupling constants in the C6H6Mu radical. Both polarizable continuum solvent models and explicit inclusion of water molecules into supermolecular complexes were used. Changes in the hyperfine couplings of in-plane hydrogen atoms are very small and difficult to discuss, partly due to relatively large experimental error bars. In contrast, the out-of-plane proton and muon hyperfine couplings exhibit more pronounced changes. These are partly due to structural changes of the radical and partly due to direct electronic polarization effects. Polarizable continuum solvent models agree well with experimental changes for benzene but overshoot the enhancement of the hyperfine couplings for water. Explicit inclusion of water molecules reduces this overestimated spin density increase and thereby tends to bring theory and experiment into closer agreement. The enhancement of the spin density on the out-of-plane hydrogen or muon atoms by the solvent environment is mainly due to an increased polarization of the singly occupied MO towards this side. Electronic Supplementary Material: Supplementary material is available in the online version of this article at dx.doi.org/10.1007/s00214-005-0680-x  相似文献   

13.
The radical cations and the radical anions of 1,6-dithiapyrene ( 1 ) and 3,10-dithiaperylene ( 2 ) as well as those of three further Weitz-type S-donors 3 , 4 , and 5 have been studied by ESR spectroscopy. The experimental findings for (widths and behaviour on saturation of hyperfine lines) suggest that the ground state of this radical anion is effectively degenerate. With the exception of , the ESR studies of all radical ions could be complemented by the use of the ENDOR and general TRIPLE resonance techniques. In addition to proton hyperfine data, 33S coupling constants have been determined for (0.53mT), (0.46mT), and (0.34mT); they are in agreement with the predicted substantial π-spin populations at the S-atoms.  相似文献   

14.
Detailed EPR and ENDOR experiments on the cocrystalline complex of 1-methyluracil:9-Ethyladenine (MUEA) have revealed that the major radiation-induced products observed at 10 K on MU are: MUEA1, a radical formed by net hydrogen abstraction from the N1-CH3 methyl group, MUEA2, the MU radical anion, and MUEA3, the C5 H-addition radical. The following four products were observed on the adenine moiety at 10 K, MUEA4, the N3 protonated adenine anion, MUEA5, the native adenine cation, MUEA6, the amino deprotonated adenine cation, and MUEA7, the C8 H-addition radical formed by net H-addition to C8 of the adenine base. The geometries, energetics, and hyperfine properties of all possible radicals of MU and EA, the native anions and cations, as well as radicals formed via net hydrogen atom abstraction (deprotonated cations) or addition (protonated anions) were investigated theoretically. All systems were optimized using the hybrid Hartree–Fock–density functional theory functional B3LYP, in conjunction with the 6-31G(d,p) basis set of Pople and co-workers. Calculations of the anisotropic hyperfine couplings for all the radicals observed in MUEA are presented and are shown to compare favorably with the experimentally measured hyperfine couplings. The calculated ionizations potentials indicate that EA would be the preferred oxidation site. In MUEA, both the adenine cation and its N4-deprotonated derivative were observed. The calculated electron affinities indicate that MU would be the preferred reduction site. In MUEA radical, MUEA2 is a uracil reduction product, however the protonation state of this radical could not be determined experimentally. Calculations suggest that MUEA2 is actually the C4=O protonated anion.  相似文献   

15.
Unlike the simple phenazine (PZ) molecule, one of its derivatives, dibenzo[a,c]phenazine (DBPZ) forms a charge-transfer complex in the triplet state (3ECT) with different amines, e.g., N,N-dimethylaniline (DMA), 4,4'-bis(dimethylamino)diphenylmethane (DMDPM), and triethylamine (TEA). Formation of the 3ECT and radical ion pairs (RIPs) due to electron transfer is identified by laser flash photolysis. The RIPs are much more abundant in the cases of DMA and DMDPM rather than in TEA. Interestingly, a prominent magnetic field effect (MFE) is observed in both the cases of 3ECT and RIPs in homogeneous acetonitrile-water (MeCN/H2O) mixtures. This rare observation of the 3ECT and MFE in non-viscous medium could be explained by considering the extended planar structure of DBPZ and inter-radical hydrogen bonding, mediated by the intervening water molecules. The magnetic field behavior is consistent with the hyperfine mechanism; however, the low B1/2 value for DBPZ-TEA system is ascribed to fast electron exchange due to the close proximity of the corresponding radical ions.  相似文献   

16.
Density functional theory is used to calculate the electronic structure of the neutral flavin radical, FADH(*), formed in the light-induced electron-transfer reaction of DNA repair in cis,syn-cyclobutane pyrimidine dimer photolyases. Using the hybrid B3LYP functional together with the double-zeta basis set EPR-II, (1)H, (13)C, (15)N, and (17)O isotropic and anisotropic hyperfine couplings are calculated and explained by reference to the electron densities of the highest occupied molecular orbital and of the unpaired spin distribution on the radical. Comparison of calculated and experimental hyperfine couplings obtained from EPR and ENDOR/TRIPLE resonance leads to a refined structure for the FAD cofactor in Escherichia coli DNA photolyase. Hydrogen bonding at N3H, O4, and N5H results in significant changes in the unpaired spin density distribution and hyperfine coupling constants. The calculated electronic structure of FADH(*) provides evidence for a superexchange-mediated electron transfer between the cyclobutane pyrimidine dimer lesion and the 7,8-dimethyl isoalloxazine moiety of the flavin cofactor via the adenine moiety.  相似文献   

17.
报导2-甲基-3乙酰基喹喔啉1,4-二氧化物(MAQO)和它与α-环糊精(α-CD),β-环糊精(β-CD)包结物在室温下应用紫外光(λ=360nm)进行原位光化学反应生成自由基的电子自旋共振研究结果,推断MAQO在紫外光作用下首先生成激发态(MAQO)*,然后进一步发生光化学反应导致N=C双键转移而生成氮氧自由基并为ESR所检测到.从ESR检测结果猜想,在非含氢溶剂中是生成较稳定的且又相距很远的氮氧双自由基;而在含氢溶剂中,由于发生夺氢反应而生成稳定的氮氧单自由基.当MAQO-α-CD包结物在含氢溶剂中发生光化学反应时亦生成氮氧单自由基;但其ESR谱的超精细结构(hfs)和线宽均发生了变化,推断环糊精包结在MAQO分子苯环一端,受环糊精的微环境空间阻碍效应.  相似文献   

18.
A carbinolamine (1-aminoethan-1-ol-2-yl) structure for the product radical in the CoII product radical pair catalytic intermediate state in coenzyme B12 (adenosylcobalamin)-dependent ethanolamine deaminase from Salmonella typhimurium has been determined by using isotope labeling and techniques of electron paramagnetic resonance (EPR) spectroscopy. The presence of nitrogen is detected from the difference in the EPR line shapes of the product radicals that are cryotrapped during steady-state turnover on either 14N- or 15N-labeled aminoethanol substrate. Three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy of the product radical labeled with 2H reveals two types of beta-2H hyperfine couplings. A structural model is proposed in which the two beta-2H couplings arise from two C1-C2 product radical rotamer states. The sum of the dihedral angles between the C2 p-orbital axis and C1-Hbeta bonds is 120 degrees , which indicates sp3-hybridization at C1. This confirms the C1 carbinolamine structure. The identification of the carbinolamine product radical indicates that the radical rearrangement in ethanolamine deaminase deviates from the solution elimination reaction pathway and proceeds by migration of the amine from C2 of the substrate radical to C1 of the product radical.  相似文献   

19.
The one-electron reduction of tris(di-tert-butylmethylsilyl)aluminum and -gallium with alkali metals (Li, Na, K) results in the formation of the corresponding radical anions [(tBu2MeSi)3Al*-] (3) and [(tBu2MeSi)3Ga]*- (4), which were isolated in the form of the potassium salt as extremely air- and moisture-sensitive deep red crystals, representing the first isolable mononuclear radical anions of heavier group 13 elements. The molecular structures of both 3.[K+(2.2.2-cryptand)] and 4.[K+(2.2.2-cryptand)] were established by X-ray crystallography, which showed a nearly planar geometry around the radical centers. The EPR spectra of 3 and 4 showed strong characteristic signals with g-values of 2.005 for 3 and 2.015 for 4 with hyperfine coupling constants of a(27Al) = 6.2 mT for 3, a(69Ga) = 12.3 mT, and a(71Ga) = 15.7 mT for 4, corresponding to a planar geometry of the radical center.  相似文献   

20.
Possible radical reaction products issuing from H-atom addition to cytosine have been characterized and analyzed by means of a comprehensive quantum mechanical approach including density functional computations (B3LYP), together with simulation of the solvent by the polarizable continuum model (PCM), and averaging of spectroscopic properties over the most important vibrational motions. The hyperfine couplings of the semirigid 5,6-dihydrocytos-6yl radical computed at the optimized geometry are in good agreement with their experimental counterparts. On the other hand, vibrational averaging is mandatory for obtaining an effectively planar structure for the 5,6-dihydrocytos-5yl radical with the consequent equivalence of beta-hydrogens. Finally, only proper consideration of environmental effects restores the agreement between computed and experimental couplings for the base anion protonated at N3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号