首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用界面聚合法制备聚3,4-乙撑二氧噻吩/二氧化锰(PEDOT/MnO2)纳米复合物. 通过红外(IR)光谱、X射线衍射(XRD)、BET比表面积、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行表征. 结果表明, 产物是具有丰富的多孔孔道结构的无定型纳米材料, 孔径主要分布在5-25 nm范围内, 比表面积可达98 m2·g-1. 同时用循环伏安(CV)、恒流充放电和交流阻抗(EIS)等电化学测试表明, 在0.5 mol·L-1 Na2SO4溶液中, -0.2 - 0.8 V(vs SCE)的电化学窗口下, PEDOT/MnO2纳米复合物显示出良好的电化学性能, 当电流密度为0.5 A·g-1时, 所制备的PEDOT/MnO2单电极比容量达196.3 F·g-1, 500次循环后样品放电比容量保持90%左右.  相似文献   

2.
掺杂离子对聚吡咯膜的电化学容量性能的影响   总被引:1,自引:0,他引:1  
用电化学方法制备了分别以对甲基苯磺酸根(TOS-), 高氯酸根(ClO-4)和氯离子(Cl-)掺杂的聚吡咯(PPy)膜. 用循环伏安(CV)、恒电流充放电和电化学阻抗谱(EIS)等测试了它们的电化学容量性能. 用扫描电镜(SEM)和X射线衍射(XRD)分别研究了这三种PPy膜的形貌和结构. 研究发现, 由于具有疏松多孔的形貌和更有序的分子链结构, PPy-TOS和 PPy-Cl膜具有较好的充放电能力, 在深度充放电时仍具有很小的电化学电阻, 其离子扩散接近理想电容器的离子扩散机理. PPy-Cl(聚合电量2 mAh·cm-2)的比容量在扫描速率为5 mV·s-1时高达270 F·g-1, 扫描速率200 mV·s-1时仍高达175 F·g-1, 特别是, 其比能量高达35.3 mWh·g-1. PPy-TOS由于有质量较大的掺杂离子(TOS-)因而比容量略低(146 F·g-1, 扫描速率5 mV·s-1), 但具有超快速充放电能力, 在扫描速率为200 mV·s-1时, 比容量为123.6 F·g-1, 其比功率高达10 W·g-1. 并且, 两种电极材料均具有稳定的电化学循环性能.  相似文献   

3.
研究了碳纳米管(CNTs)氮气热处理后结构的变化, 以及热处理温度对CNTs-LaNi5电极电化学性能的影响. CNTs热处理后, 管壁变薄, 层数变少, 管的外径减小, 更有利于氢气的吸附和脱附. 将碳纳米管与LaNi5储氢合金按质量比1:10混合, 制作成CNTs-LaNi5电极. 800 ℃时CNTs-LaNi5电极的储氢性能最好, 最大容量为519.1 mAh•g-1, 相应的平台电压高达1.19 V. 在500~600 ℃范围内, 随着温度升高, 放电容量有较大幅度的增加; 在600~800 ℃范围内, 随着温度升高, 放电容量有较小幅度的增加; 但到900 ℃时, 放电容量反而下降. 由此可见, CNTs的热处理温度对CNTs-LaNi5电极的电化学储氢性能有着较大的影响. 纯LaNi5电极的放电容量仅为265.6 mAh•g-1, 平台电压仅为0.83 V. 添加了碳纳米管的CNTs-LaNi5电极的电化学活性高于纯LaNi5电极.  相似文献   

4.
多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能   总被引:1,自引:0,他引:1  
为了得到高面积比容量的聚吡咯(PPy)膜超级电容器电极材料, 用多次聚合法合成了PPy厚膜, 聚合电量分别为8、10和12 mAh·cm-2, 掺杂离子分别为氯离子和对甲基苯磺酸根离子(TOS-). PPy膜的电化学性能采用恒电流充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法测试. 研究表明, 多次聚合法可以制备表面平整且内部均匀多孔的PPy厚膜. 在聚合电量为12 mAh·cm-2时, 用Cl-、TOS-两种离子掺杂的PPy厚膜的面积比容量高达5 F·cm-2, 并表现出理想的电化学容量性能. 同时PPy-Cl厚膜的质量比容量达到330 F·g-1, PPy-TOS厚膜的质量比容量略低(191 F·g-1), 但具有更快的充放电速率. 与一次聚合法合成的PPy 薄膜相比, 多次聚合法合成的PPy厚膜的质量比容量没有降低. 通过场发射扫描电镜(SEM)观察了一次聚合法和多次聚合法制备的PPy厚膜的截面形貌, 并讨论了多次聚合法的合成机理.  相似文献   

5.
以三维多孔泡沫铜为基底, 通过直接电沉积的方法制备锂离子电池Cu6Sn5合金负极材料. 发现合金表面大量的微孔和“小岛”不仅增大电极的表面积, 而且显著缓解充放电过程中的体积变化. 测得三维多孔Cu6Sn5合金的初始放电(嵌锂)容量为620 mAh·g-1, 充电(脱锂)容量为560 mAh·g-1, 库仑效率达到90.3%, 具有较好的循环性能. 扫描电子显微镜(SEM)结果显示, 在泡沫铜基底上制备的Cu6Sn5合金电极具有比通常的铜片基底更好的结构稳定性, 经过50 周充放电循环后无明显的脱落现象.  相似文献   

6.
通过溶胶-凝胶法制备了尖晶石LiMn2O4. 用分散剂Lormar D, 经超声分散制得了含LiMn2O4粒子的打印“墨水”, 并使用计算机喷墨打印的方法制得LiMn2O4薄膜电极. 薄膜电极的厚度约为1.8 μm. 用XRD、TG-DTA、SEM、循环伏安、电化学阻抗谱和充放电等方法对材料和电极的性能进行了表征. 结果表明, 在较大电流100 μA·cm-2 (2C)的充放电情况下, 电极能保持好的稳定性,其首次放电容量为109 mAh·g-1, 充放电54次后, 其容量仍可保持97.4%, 为105 mAh·g-1, 这可归因于薄膜电极中尖晶石LiMn2O4的晶型完整, LiMn2O4粒子小以及稳定的超薄电极结构.  相似文献   

7.
对比研究了熔体旋淬和常规熔铸Ml(NiCoMnAl) 5 贮氢合金的组织结构和电化学特性。SEM和XRD分析表明 :熔体旋淬合金为细小的柱状晶粒组成 ,随着旋淬速度的增加 ,晶粒越来越细小 ,成分越来越均匀 ;它们的晶体结构和铸态一样 ,都为CaCu5 型六方晶体结构 ;随着旋淬速度的增加 ,晶粒主要按 (111) [111]择优取向生长。电化学测试表明 :旋淬态合金电极初始容量都大于 2 10mAh·g - 1 ,活化性能好 ,经两次充放电循环 ,就可达到最大放电容量。旋淬速度 10m·s- 1 的合金电极的最大放电容量 (2 94mAh·g- 1 )与铸态合金电极的最大容量相当 ,所有旋淬速度的合金电极充放电循环稳定性优于铸态合金电极。在 6 0 0mA·g- 1 电流密度下 ,旋淬速度 10m·s- 1 的合金电极充电 45min就能达到其最大容量的 6 5 %左右 ,具有较好的高倍率充放电能力 ,但随着循环次数的增加 ,它的容量稳定性稍次于旋淬速度 40m·s- 1 的合金电极。  相似文献   

8.
用射频磁控溅射法在Si(111)衬底上沉积制备金属Pd膜、LaNiO3单层膜和Pd/LaNiO3复合薄膜,利用XRD,SEM,EDS能谱、四元探针和电化学方法系统研究了退火处理和表面覆Pd对Pd/LaNiO3复合薄膜电极的相组织结构、表面形貌、电学以及电化学储氢行为的影响。结果表明,700℃退火1 h后,LaNiO3薄膜具有结晶度较佳的钙钛矿型菱方结构组织和最小的电阻率(0.79 mΩ·cm),退火温度高于800℃后,LaNiO3菱方型结构组织开始分解,电阻率增加。LaNiO3薄膜在空气中退火后其表面化学吸附氧转变为晶格氧,导致LaNiO3薄膜氧元素含量明显增加。电化学测试结果表明,在碱液中金属Pd膜具有良好的析氢电催化活性和较好的电化学储氢性能,其最大放电容量为130 mAh·g-1。退火态LaNiO3单膜电极放电容量很小(27 mAh·g-1),当表面覆Pd后退火态LaNiO3/Pd复合薄膜电极放电容量增加至181 mAh·g-1,扣除其表面Pd膜吸氢容量后LaNiO3薄膜电极的实际放电容量最高达到400 mAh·g-1。LaNiO3表面镀Pd后能极大改善和提高LaNiO3薄膜电极的电催化活性和电化学储氢容量。  相似文献   

9.
通过超声浸渍法以不同浓度的Y(NO3)3溶液成功地制得几种声化学改性锌粉, 以期改善碱性电池锌电极的电化学性能. 利用扫描电镜(SEM)、X射线衍射(XRD)及电化学测试等方法考察了改性锌粉上Y(OH)3/Y2O3的形成及相应锌电极的耐腐蚀和循环性能. 结果表明, Y(NO3)3浓度为0.036 mol·L-1时, 声化学改性锌粉表面均匀分布着颗粒状的Y(OH)3/Y2O3, 且这些钇化合物优先生长在锌粉表面的缺陷位置, 阻挡了电化学过程中锌酸根离子向碱性电解液中的溶解与扩散, 使得相应锌电极的缓蚀效率达79.6%, 且20次循环伏安曲线的阴、阳极峰电位差比空白样减小了285 mV. 将这种改性锌粉和空白锌粉组装成模拟锌银电池, 在250 mA·cm-2的高放电电流密度下测试发现, 声化学改性锌粉的锌电极从1次到30次循环的放电容量损失仅为62.7 mAh·g-1; 且放电容量在50周期时达到322.6 mAh·g-1, 说明声化学改性锌粉可明显提高电极的放电容量和循环寿命.  相似文献   

10.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/Super P(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/Super P比表面积为100.9 m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6 nm厚)的复合材料具有最高的电化学活性,在300 mA·g-1的电流密度下,循环可逆比容量达到1 900 mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

11.
Ordered porous carbon with tailored pore size represents an innovative concept in electrochemical hydrogen storage. This work deals with physical characteristics and electrochemical hydrogen storage behavior of the ordered porous carbons with well-tailored pore size, synthesized by a replica technique using hexagonal mesoporous silica as templates. By using a mixture of two surfactants (HTAB and C16EO8) at different ratios, it is possible to control the wall thickness of silica and, consequently, the pore diameter of carbons within a narrow range of 2.1-2.8 nm. In addition, highly developed ultramicroporosity (pore size smaller than 0.7 nm), which plays a predominant role in hydrogen storage, can be produced in the ordered porous carbons. A discharge capacity of up to 527 mAh/g (corresponding to 1.95 wt % hydrogen storage) has been achieved in 6 M KOH for the ordered porous carbon. Furthermore, the ordered porous carbons also possess excellent capacity retainability after charge-discharge cycles and rate capability.  相似文献   

12.
Graphene coating is commonly used to improve the performance of electrode materials,while its steric hindrance effect hampers fast ion transport with compromised rate capability.Herein,a unique single-walled carbon nanotubes(SWNTs)coating layer,as an alternative to graphene,has been developed to improve the battery behavior of iron-based anodes.Benefiting from the structure merits of mesoporous SWNTs layer for fast electron/ion transport and hollow Fe3O4 for volume accommodation,as-prepared Fe3O4@SWNTs exhibited excellent lithium storage performance.It delivers a high capacity,excellent rate capability,and long lifespan with capacities of 582 mA·h·g-1 at 5 A·g-1 and 408 mA·h·g-1 at 8 A·g-1 remained after 1000 cycles.Such performance is better than graphene-coated Fe3O4 and other SWNT-Fe3O4 architectures.Besides,SWNTs coating is also used to improve the sodium and potassium storage performance of FeSe2.The kinetics analysis and ex-situ experiment further reveal the effect of SWNTs coating for fast electron/ion transfer kinetics and good structure stability,thus leading to the superior performance of SWNTs-coated composites.  相似文献   

13.
以乙酸锰和钛酸四丁酯为原料,柠檬酸为络合剂,采用溶胶-凝胶法制备钛酸锰(MnTiO3)粉体,而后将其粉体高温氨气氮化,可得到MnO/TiN复合材料. 使用X射线衍射(XRD)、X射线能量色散谱(EDS)和场发射扫描电子显微镜(FESEM)表征材料的物相结构与组分、观察其形貌. 采用循环伏安、恒流充放电和电化学阻抗方法测试电极电化学性能. 结果表明,MnO/TiN电极在100 mA?g-1和1 A?g-1倍率放电下,比容量分别为394 mAh?g-1和146 mAh?g-1,均高于单纯MnO电极比容量和倍率性能,这归因于复合材料中的TiN提供了导电网络,并有效地抑制了电极在充放电过程中的体积膨胀效应.  相似文献   

14.
以十六烷基三甲基溴化铵(CTAB)为结构导向剂, 正硅酸乙酯(TEOS)为硅源, 通过添加碳纳米管(CNTs), 制备介孔二氧化硅包覆碳纳米管网状结构的复合材料(C/Si). X 射线衍射(XRD)和透射电子显微镜(TEM)显示, 介孔二氧化硅的孔道结构高度有序, CNTs 均匀分散于二氧化硅刚性骨架中. 以其为载体微波负载制备了Pt-C/Si-x 纳米粒子催化剂,研究了催化剂在硫酸和甲醇溶液中电催化性能, 结果表明, 具有较高导电性能的复合材料保持了二氧化硅的均匀的孔道结构有利于电解液存储和质子传输, 使得该催化剂显示了良好的电催化活性. 其中碳纳米管添加含量为40 mg 时,催化剂在H2SO4 电解液中的电化学活性面积高达120.9 m2·g-1, 远大于Pt/CNTs 的电化学活性面积, 对甲醇的催化峰电流也达80.3 mA·cm-2. 预示其作为直接甲醇燃料电池催化剂载体具有良好的应用前景.  相似文献   

15.
李国然  孙帅  高学平 《电化学》2012,(2):135-139
以金红石型TiO2和NaOH为原料,由水热反应制备Na2Ti6O13纳米管.然后,在含有0.1 mol.L-1NaOH的葡萄糖水溶液中反应4 h制得碳包覆的Na2Ti6O13纳米管.X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析表明,该碳包覆Na2Ti6O13纳米管外径约14~19 nm,内径约2~5 nm,长度为数百纳米,有一层厚度约为2 nm的碳层包覆在纳米管外壁.以其作为锂离子电池负极材料,恒电流充放电测试表明,在50 mA.g-1电流密度下首周可逆容量达到161 mAh.g-1,循环100周后容量保持在147 mAh.g-1.相比于Na2Ti6O13纳米管,提高了20%以上.电流密度升至1600 mA.g-1充放电,碳包覆Na2Ti6O13纳米管可逆容量仍有70 mAh.g-1左右,远高于Na2Ti6O13纳米管,表现出良好的倍率性能.  相似文献   

16.
以柠檬酸镁为原料,采用直接碳化法制备介孔炭电极材料。N2吸附测试表明,所制备多孔炭的比表面积达2 000 m2·g-1左右,介孔孔容和平均孔径随着炭化温度的升高而增加,当炭化温度大于800℃时,能够制备出以介孔结构为主的多孔炭材料。电化学测试表明,MgC-800和MgC-900具有优异的电化学电容特性。与硬模板法制备的OMC相比,MgC-800和MgC-900在实验电流密度范围内具有更大的比电容值,这应当归功于它们巨大的比表面积以及有利于电解质离子扩散的介孔结构。  相似文献   

17.
碳纳米管的电化学贮氢性能研究   总被引:13,自引:0,他引:13  
研究了碳纳米管电极的电化学性能 ,其电化学储氢量达到 2 0 0mAh·g 1且具有高的电化学活性和良好的循环寿命 .采用循环伏安法研究了氢在碳纳米管电极上吸附 /氧化机理 .  相似文献   

18.
《中国化学快报》2023,34(7):108054
Heteroatom-doped porous carbon materials are very attractive for lithium ion batteries (LIBs) owing to their high specific surface areas, open pore structures, and abundant active sites. However, heteroatom-doped porous carbon with very high surface area and large pore volume are highly desirable but still remain a big challenge. Herein, we reported a sulfur-doped mesoporous carbon (CMK-5-S) with nanotubes array structure, ultrahigh specific surface area (1390 m2/g), large pore volume (1.8 cm3/g), bimodal pore size distribution (2.9 and 4.6 nm), and high sulfur content (2.5 at%). The CMK-5-S used as an anode material for LIBs displays high specific capacity, excellent rate capability and highly cycling stability. The initial reversible specific capacity at 0.1 A/g is as high as 1580 mAh/g and simultaneously up to 701 mAh/g at 1 A/g even after 500 cycles. Further analysis reveals that the excellent electrochemical storage performances is attributed to its unique structures as well as the expanded lattice by sulfur-doping.  相似文献   

19.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

20.
Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g−1 after 500 cycles at 2 A g−1, 132.5 mAh g−1 at 20 A g−1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号