首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetic parameters including the activation energy for crystallization (E), the Avrami parameter (n) and frequency factor (υ) of a glass in the MgO–CaO–SiO2–P2O5–F system were studied using non-isothermal differential thermal analysis (DTA) with regard to small amount of TiO2 additions. It has been shown that the role of TiO2 changes from a glass network former to a glass network modifier with increasing TiO2 content in this system. The kinetic parameters of the crystallizing phases, apatite and wollastonite, indicated changes accompanied with TiO2 additions, implying that the TiO2 is an effective nucleating agent for promoting the crystallization of apatite and wollastonite. The most effective addition is of about 4 wt% TiO2 in this system. The wear rate and friction coefficient decreased from 1.8 ± 0.1 to 0.9 ± 0.2 and 0.87 to 0.77, respectively, when 4 wt% TiO2 was incorporated to the base glass.  相似文献   

2.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

3.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

4.
The drying and sintering processes of SiO2–ZrO2 alkoxide-derived gels have been studied by means of DSC technique. In the drying process, most part of water and alcohols are removed from the gels. For the SiO2 gel such elimination occurs at the end of the drying process, however for the ZrO2 gel this elimination occurs during the whole drying time. An intermediate behavior is observed for the binary system SiO2–ZrO2 gels. In the sintering process, the DSC technique allows to determine the elimination of water and alcohols retained within the structure (open or close pores) and the well-known hydroxyl condensation of silica gel between 700° and 800°C is also observed. The ZrO2 gel shows the final hydroxyl condensation at the heating temperature of 600°C. For the binary SiO2–ZrO2 gels, the hydroxyl condensation has been associated to the activation energy needed for the dissociation of silica hydroxyls. This energy decreases with the ZrO2 concentration in the gel resulting in a sintering treatment of 500°C leading to the entire hydroxyl condensation for the gel with 75% ZrO2–25% SiO2.

By studying the temperature of the DSC peaks, it is possible to know the temperature at which most part of water and alcohols are leaving the gel, and these results can be used in order to select the corresponding drying or sintering schedules for obtaining a well-fabricated material.  相似文献   


5.
The structural development of the NiFe2O4 nanocrystals dispersed in a silica matrix was followed by IR and EPR spectroscopies of the dried gel 10NiO–10Fe2O3–90SiO2 after heat treatment. The dried gel obtained at 200°C was amorphous, in which Fe3+ and Ni2+ ions were distributed in the pores of silica matrix. When the dried gel was heat treated at 400°C, NiFe2O4 clusters were partially formed, showing an enhanced interaction with the silica matrix. NiFe2O4 clusters were completely formed in silica matrix when the heat treatment was increased to 600°C, at which the interactions between the clusters and silica matrix reached a maximum. The formation reaction of NiFe2O4 clusters was accompanied by a rearrangement of the silica matrix network. Further increase of the heat treatment temperature to 800°C led to superparamagnetic single domain NiFe2O4 nanocrystals (ca. 4 nm) dispersed in the silica matrix with the elimination of the interactions between magnetic nanocrystals and silica matrix.  相似文献   

6.
The mechanism of the SO2 + HO2 reaction was studied theoretically for the first time. Three product channels were revealed, namely, O2 + HOSO, O2 + HSO2, and OH + SO3. The O2 + HOSO channel dominates the reaction under combustion conditions. A five-member-ring complex [SO2–HO2] exists at the entrance of the reaction. The structure and binding energy (De and D0) of the SO2–HO2 complex have been calculated. In view of D0 = 21.2 ± 2.0 kJ mol−1, the SO2–HO2 complex should be stable at low temperature. The infrared spectra and frequency shifts were calculated for both SO2–HO2 and SO2–DO2, and compared with the available experimental data.  相似文献   

7.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

8.
The effects of doping of Co3O4with MgO (0.4–6 mol%) and V2O5 (0.20–0.75 mol%) on its surface and catalytic properties were investigated using nitrogen adsorption at −196°C and decomposition of H2O2 at 30–50°C. Pure and doped samples were prepared by thermal decomposition in air at 500–900°C, of pure basic cobalt carbonate and basic carbonate treated with different proportions of magnesium nitrate and ammonium vanadate. The results revealed that, V2O5 doping followed by precalcination at 500–900°C did not much modify the specific surface area of the treated Co3O4 solid. Treatment of Co3O4 with MgO at 500–900°C resulted in a significant increase in the specific surface area of cobaltic oxide. The catalytic activity in H2O2 decomposition, of Co3O4 was found to suffer a considerable increase by treatment with MgO. The maximum increase in the catalytic reaction rate constant (k) measured at 40°C on Co3O4 due to doping with 3 mol% MgO attained 218, 590 and 275% for the catalysts precalcined at 500, 700 and 900°C, respectively. V2O5-doping of Co3O4 brought about a significant progressive decrease in its catalytic activity. The maximum decrease in the reaction rate constant measured at 40°C over the 0.75 mol% V2O5-doped Co3O4 solid attained 68 and 93% for the catalyst samples precalcined at 500 and 900°C, respectively. The doping process did not modify the activation energy of the catalyzed reaction but much modified the concentration of catalytically active constituents without changing their energetic nature. MgO-doping increased the concentration of CO3+–CO2+ ion pairs and created Mg2+–CO3+ ion pairs increasing thus the number of active constituents involved in the catalytic decomposition of H2O2. V2O5-doping exerted an opposite effect via decreasing the number of CO3+–CO2+ ion pairs besides the possible formation of cobalt vanadate.  相似文献   

9.
Fine particle superacidic sulfated zirconia (SO42−/ZrO2, S-ZrO2) was synthesized by ameliorated method, and composite membranes with different S-ZrO2 contents were prepared by a recasting procedure from a suspension of S-ZrO2 powder and Nafion solution. The physico-chemical properties of the membranes were studied by ion exchange capacity (IEC) and liquid water uptake measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, thermogravimetry–mass spectrometry (TG–MS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the IEC of composite membrane increased with the content of S-ZrO2, S-ZrO2 was compatible with the Nafion matrix, the incorporation of the S-ZrO2 could increase the crystallinity and also improve the initial degradation temperature of the composite membrane. The performance of single cell was the best when the S-ZrO2 content was 15 wt.%, and achieved 1.35 W/cm2 at 80 °C and 0.99 W/cm2 at 120 °C based on H2/O2 and at a pressure of 2 atm, the performance of the single cell with optimized S-ZrO2 was far more than that of the Nafion at the same condition (e.g. 1.28 W/cm2 at 80 °C, 0.75 W/cm2 at 120 °C). The 15 wt.% S-ZrO2/Nafion composite membrane showed lower fuel cell internal resistance than Nafion membranes at high temperature and low relative humidity (RH).  相似文献   

10.
Al2O3–ZrO2 mixed supports have been synthesised using a colloidal solution of ZrO(OH)2 or a Zr(IV) propoxide solution in organic medium. Zirconia content in these samples was about 10% (36% of the theoretic monolayer). The hydrothermal stability (alumina→boehmite transformation at 230 °C, about 10 bar pressure, in the presence of water vapour) of these supports was then investigated by XRD. The presence of the zirconia over the alumina decrease the quantity of boehmite formed after the hydrothermal treatment. The dispersion of zirconia and the stability in hydrothermal conditions of the final support are function of the preparation method.  相似文献   

11.
To develop porous alumina supported MF ZrO2 membranes, ZrO2–Al2O3 composite intermediate layers are considered in order to decrease stress creation during the processing and avoid cracks formation. The relation between distortion stress and sintering shrinkage was experimentally studied. And the cracks formation mechanism was qualitatively evaluated and discussed. Finally, crack-free YSZ membrane with pore size of 0.16 μm on the two ZrO2–Al2O3 intermediate layers possessing a gradient composition was successfully prepared and characterized.  相似文献   

12.
The solid state formation of lithium manganese oxides has been studied from the thermal decomposition of mixtures Li2CO3–Mn3O4 with XLi (lithium cationic fraction)=0.33 (LiMn2O4), 0.50 (LiMnO2) and 0.66 (Li2MnO3). The analysis of the reactivity has been performed mainly by thermoanalytical (TG/DSC) and diffractometric (XRPD) techniques either on physical mixtures and on mixtures subjected to mechanical activation by high energy milling. At XLi=0.33, the cubic lithium manganese spinel oxide (LiMn2O4) forms in air. TG measurements showed that the reaction starts at a considerably lower temperature in the activated mixture. By variable temperature X-ray diffraction it has been assessed that, upon mechanical activation, LiMn2O4 forms directly and its formation is completed within 700 °C whereas, starting from a physical mixture, the formation goes through Mn2O3 and is complete only at 800 °C. At T>820 °C LiMn2O4 reversibly decomposes to LiMnO2 and Mn3O4 with an enthalpy of 30.05 kJ mol−1 of LiMn2O4. At XLi=0.50, by annealing under nitrogen flow for 6 h at 650 °C the activated mixture, the orthorhombic LiMnO2 is formed. Such a formation goes through a mixture of LiMnO2 and LiMn2O4. The enthalpy of LiMnO2 solid state formation from the activated mixture has been determined to be 57.4 kJ mol−1 of LiMnO2. At XLi=0.66 in air the mechanical activation considerably lowers the temperature within the monoclinic phase Li2MnO3 forms. Besides the reaction enthalpy could be determined as 40.13 kJ mol−1 of Li2MnO3. The reaction, when performed under nitrogen flow, goes through the formation of LiMnO2. Such a first stage of the reaction is affected by the temperature of reaction rather than by mechanical activation. The activation greatly enhances the second stage of the reaction leading from LiMnO2 to Li2MnO3.  相似文献   

13.
W.M. Shaheen   《Thermochimica Acta》2008,470(1-2):18-26
The effects of calcination temperature and doping with K2O on solid–solid interactions and physicochemical properties of NiO/Fe2O3 system were investigated using TG, DTA and XRD techniques. The amounts of potassium, expressed as mol% K2O were 0.62, 1.23, 2.44 and 4.26. The pure and variously doped mixed solids were thermally treated at 300, 500, 750, 900 and 1000 °C. The catalytic activity was determined for each solid in H2O2 decomposition reaction at 30–50 °C. The results obtained showed that the doping process much affected the degree of crystallinity of both NiO and Fe2O3 phases detected for all solids calcined at 300 and 500 °C. Fe2O3 interacted readily with NiO at temperature starting from 700 °C producing crystalline NiFe2O4 phase. The degree of reaction propagation increased with increasing calcination temperature. The completion of this reaction required a prolonged heating at temperature >900 °C. K2O-doping stimulates the ferrite formation to an extent proportional to its amount added. The stimulation effect of potassium was evidenced by following up the change in the peak height of certain diffraction lines characteristic NiO, Fe2O3, NiFe2O4 phases located at “d” spacing 2.08, 2.69 and 2.95 Å, respectively. The change of peak height of the diffraction lines at 2.95 Å as a function of firing temperature of pure and doped mixed solids enabled the calculation of the activation energy (ΔE) of the ferrite formation. The computed ΔE values were 120, 80, 49, 36 and 25 kJ mol−1 for pure and variously doped solids, respectively. The decrease in ΔE value of NiFe2O4 formation as a function of dopant added was not only attributed to an effective increase in the mobility of reacting cations but also to the formation of potassium ferrite. The calcination temperature and doping with K2O much affected the catalytic activity of the system under investigation.  相似文献   

14.
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements.  相似文献   

15.
Electrocatalytic water oxidation to evolve O2 was studied on a Nafion–RuO2–Ru(bpy)32+ composite electrode. The O2 evolution current efficiency was largely improved for the multi-component electrode over the Nafion–RuO2 and Nafion–Ru(bpy)32+ individuals. The redox mediation through the Ru(bpy)32+ was found to dominate over the RuO2 catalytic effect in the water oxidation mechanism. The specific surface area of the RuO2, which was prepared at different temperatures (300–700°C), used in fabricating the composite electrode also played an important role in the overall water oxidation mechanism. Both the reaction and electrode parameters were optimized to get effective electrocatalytic current values in this study.  相似文献   

16.
The effect of replacement of R4Sn by germanium and silicon derivatives as the promoter for the catalyst system Re2O7/SiO2-Al2O3 in the metathesis of hex-1-ene, and the system Re2O7/B2O3/SiO2-Al2O3 in the metathesis of methyl oleate, was studied. The new promoters react slowly with the rhenium oxide. An activation time of about 15 min at temperatures varying from 50 to 75 °C is required for obtaining a good catalytic activity. These promoters can replace the toxic tin compounds, although they give rise to lower turnover numbers in the metathesis of methyl oleate.  相似文献   

17.
TiO2/InN (In/(Ti + In) = 6.5:100 mol) was prepared by nitridation of TiO2/In2O3 by NH3 at 580 °C for 8 h. Only the anatase TiO2 phase was detected in the XRD measurements. The highly dispersed InN clusters on the surface of anatase TiO2 nanocrystals were beyond the detection limit of XRD. In order to confirm the existence of InN in the products of nitridation, thermogravimetry–differential scanning calorimetry–mass spectrometry (TG–DSC–MS) coupling techniques were used for a simultaneous characterizing study of the changes of mass, enthalpy and determination of the evolved gases during the thermal decomposition of the InN and the nitrided TiO2/In2O3 samples. Moreover, pulse thermal analysis (PulseTA) was combined with TG–DSC–MS for the quantitative calibration of the evolved nitrogen formed during the thermal decomposition of the InN and the nitrided TiO2/In2O3. The applied technique enabled identification and quantification of the InN in the products of the nitridation of TiO2/In2O3.  相似文献   

18.
Microdifferential thermal analysis (μ-DTA), X-ray diffraction (XRD) and infrared (IR) spectroscopy were used for the first time to investigate the liquidus and solidus relations in the KPO3–Y(PO3)3 system. The only compound observed within the system was KY(PO3)4 melting incongruently at 1033 K. An eutectic appears at 13.5 mol% Y(PO3)3 at 935 K, the peritectic occurs at 1033 K and the phase transition for potassium polyphosphate KPO3 was observed at 725 K. Three monoclinic allotropic phases of the single crystals were obtained. KY(PO3)4 polyphosphate has the P21 space group with lattice parameters: a=7.183(4) Å, b=8.351(6) Å, c=7.983(3) Å, β=91.75(3)° and Z=2 is isostructural with KNd(PO3)4. The second allotropic form of KY(PO3)4 belongs to the P21/n space group with lattice parameters: a=10.835(3) Å, b=9.003(2) Å, c=10.314(1) Å, β=106.09(7)° and Z=4 and is isostructural with TlNd(PO3)4. The IR absorption spectra of the two forms show a chain polyphosphates structure. The last modification of KYP4O12 crystallizes in the C2/c space group with lattice parameters: a=7.825(3) Å, b=12.537(4) Å, c=10.584(2) Å, β=110.22(7)° and Z=4 is isostructural with RbNdP4O12 and contains cyclic anions. The methods of chemical preparations, the determination of crystallographic data and IR spectra for these compounds are reported.  相似文献   

19.
Titania–zirconia mixed oxides with various ZrO2 content in TiO2 (10, 50 and 90 wt.%) were prepared by the sol–gel method. High specific surface areas (77–244 m2/g) were obtained. Acidity determined by NH3-TPD and FTIR-pyridine adsorption showed that in mixed oxides the number of acid sites is dramatically increased; it varies from 173 μmol NH3/g for TiO2 to 1226–1456 μmol NH3/g for the mixed oxides. FTIR-pyridine adsorption showed the presence of Lewis sites in the catalysts. Basic sites were identified by FTIR-CO2 adsorption, suggesting the formation of mixed oxides with acid–basic properties. XRD spectra identified anatase in the TiO2 rich region, amorphous material in the mixed oxide 50–50 TiO2–ZrO2 and tetragonal and monoclinic crystalline phases in the ZrO2 rich region. Activity in the isopropanol decomposition showed a good correlation between the acid–basic properties and the selectivity to propene, acetone and isopropyl ether. The latter was found as a product which mainly depends of the acid sites density.  相似文献   

20.
The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements.

Two isotherms were established at 0 and 15 °C, and the stable solid phases which appear are the iron nitrate nonahydrate (Fe(NO3)3·9H2O), the iron nitrate hexahydrate (Fe(NO3)3·6H2O), the cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and the cobalt nitrate trihydrate (Co(NO3)2·3H2O).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号