首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work non-stationary behavior of the counter-flow diffusion flame is examined in the context of the recently developed approach of model reduction called REaction–DIffusion Manifolds (REDIM) method. It is a natural extension of the ILDM approach which takes into account both the chemical reaction and the diffusion processes. It has been developed to treat both premixed and non-premixed regimes of combustion. In this work we investigate the ability of the concept to describe transient processes of extinction and re-ignition. A very simple flame configuration and transport model are considered in this current study for the sake of transparency because the main focus is on the transient and non-stationary behavior of flames. H2/O2/N2 combustion system is considered in a non-premixed counter-flow diffusion 1D flame configuration. This study shows how the REDIM concept performs in the transient regimes; it interprets the effect of local extinction and reigniting phenomena using detailed and reduced models. It shows how the unstable/transient behavior of a detailed system can be successfully accounted with the help of the REDIM based reduced model.  相似文献   

2.
During the last decades, tabulated chemistry approaches, like manifold-based concepts to implement model reduction, have become a widespread, promising and accurate method to take chemical reactions into account in computing reacting flows. However, there is a number of crucial issues concerning the generation and implementation of the tabulated chemistry approaches. These concern the way manifolds of the arbitrary dimension are generated, parametrised (i.e. tabulated) preserving fast/slow decomposition and implemented rigorously by the formulation of a reduced model in a coordinate independent manner.

This study discusses these problems in detail and suggests generic solutions based on the Reaction–Diffusion Manifolds (REDIM) method. A REDIM tabulated chemistry concept obtained by using the hierarchical nature of the invariant slow system manifolds is presented. Numerical aspects of the implementation are in the focus of the paper. It is shown how the concept is implemented to overcome most problems without a-priori knowledge of the considered system behaviour. As a basic example for discussion and illustration synthesis, gas/air combustion in premixed, freely propagating flames is used.  相似文献   

3.
The goal of this work is to analyze the use of automatically reduced chemistry by the Reaction–Diffusion Manifold (REDIM) method in simulating axisymmetric laminar coflow diffusion flames. Detailed chemical kinetic models are usually computationally prohibitive for simulating complex reacting flows, and therefore reduced models are required. Automatic reduction model approaches usually exploit the natural multi-scale structure of combustion systems. The novel REDIM approach applies the concept of invariant manifolds to treat also the influence of the transport processes on the reduced model, which overcomes a fundamental problem of model reduction in neglecting the coupling of molecular transport with thermochemical processes. We have considered a previously well studied atmospheric pressure nitrogen-diluted methane–air flame as a test case to validate the methodology presented here. First, one-dimensional and two-dimensional REDIMs were computed and tabulated in lookup tables. Then, the full set of governing equations are projected on the REDIM and implemented in the object-oriented C++ Gascoigne code with a new add-on library to deal with the REDIM tables. The projected set of governing equations have been discretized by the Finite Element Method (FEM) and solved by a GMRES iteration preconditioned by a geometric multigrid method. Local grid refinement, adaptive mesh and parallelization are applied to ensure efficiency and precision. The numerical results obtained using the REDIM approach have shown very good agreement with detailed numerical simulations and experimental data.  相似文献   

4.
5.
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.  相似文献   

6.
In this work a novel modification of the REDIM method is presented. The method follows the main concept of decomposition of time scales. It is based on the assumption of existence of invariant slow manifolds in the thermo-chemical composition space (state space) of a reacting flow. A central point of the current modification is its capability to include both transport and thermo-chemical processes and their coupling into the definition of the reduced model. This feature makes the method more problem oriented, and more accurate in predicting the detailed system dynamics. The manifold of the reduced model is approximated by applying the so-called invariance condition together with repeated integrations of the reduced model in an iterative way. The latter is needed to improve the estimate of gradients of the reduced model parameters (coordinates which define the reduced manifold locally). To verify the approach one-dimensional stationary laminar methane/air and syngas/air flames are investigated. In particular, it is shown that the adaptive REDIM method recovers the full stationary system dynamics governed by detailed chemical kinetics and the molecular transport in the case of a one dimensional reduced model and, therefore, includes the so-called flamelet method as a limiting case.  相似文献   

7.
Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion.  相似文献   

8.
In this work, the Reaction-Diffusion Manifold (REDIM) method, a method for model reduction, is applied to a premixed isooctane-air system with Flame-Wall-Interactions (FWI). In order to provide a highly accurate reduced kinetic model, a detailed model for the diffusive processes is applied and complex boundary conditions that account for heterogeneous wall reactions are implemented.The REDIM is constructed and validated by comparing results of detailed and reduced kinetics in the system state space. The results of the reduced computations are compared with those of the detailed computations. It is shown that the reduced kinetics reproduce the results of the FWI very accurately. In particular, the difference between detailed kinetics with and without wall reactions is larger than the difference between detailed and reduced kinetics with heterogeneous wall reactions, which demonstrates the quality of the model reduction.  相似文献   

9.
The formation of NOx in hydrogen-fuelled pulse detonation engines (PDE) is investigated numerically. The computations are based on the axisymmetric Euler equations and a detailed combustion model consisting of 12 species and 27 reactions. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation front. Computed NO concentrations are in good agreement with experimental measurements obtained at two operating frequencies and two equivalence ratios. Additional computations examine the effects of equivalence ratio and residence time on NOx formation at ambient conditions. The results indicate that NOx formation in PDEs is very high for near stoichiometric mixtures. NOx reduction requires use of lean or rich mixtures and the shortest possible detonation tube. NOx emissions for very lean or very rich mixtures are, however, fairly insensitive to residence time.  相似文献   

10.
In the present work, the method of simplifying chemical kinetics based on Intrinsic Low-Dimensional Manifolds (ILDMs) is modified to deal with the coupling of reaction and diffusion processes. Several problems of the ILDM method are overcome by a relaxation to an invariant system manifold (Reaction–Diffusion Manifold – REDIM). This relaxation process is governed by a multidimensional parabolic partial differential equation system, where, as an initial solution, an extended ILDM is used. Furthermore, a method for the solution and tabulation of the manifold is proposed in terms of generalized coordinates, with a subsequent procedure for the integration of the reduced system on the found manifold. This modification of the ILDM significantly improves the performance of the concept and allows us to extend its area of applicability. Illustrative comparative calculations of detailed and reduced models of flat laminar flames verify the approach.  相似文献   

11.
Recent studies have demonstrated stable generation of power from pure ammonia combustion in a micro gas turbine (MGT) with a high combustion efficiency, thus overcoming some of the challenges that discouraged such applications of ammonia in the past. However, achievement of low NOx emission from ammonia combustors remains an important challenge. In this study, combustion techniques and combustor design for efficient combustion and low NOx emission from an ammonia MGT swirl combustor are proposed. The effects of fuel injection angle, combustor inlet temperature, equivalence ratio, and ambient pressure on flame stabilization and emissions were investigated in a laboratory high pressure combustion chamber. An FTIR gas analyser was employed in analysing the exhaust gases. Numerical modeling using OpenFOAM was done to better understand the dependence of NO emissions on the equivalence ratio. The result show that inclined fuel injection as opposed to vertical injection along the combustor central axis resulted to improved flame stability, and lower NH3 and NOx emissions. Numerical and experimental results showed that a control of the equivalence ratio upstream of the combustor is critical for low NOx emission in a rich-lean ammonia combustor. NO emission had a minimum value at an upstream equivalence ratio of 1.10 in the experiments. Furthermore, NO emission was found to decrease with ambient pressure, especially for premixed combustion. For the rich-lean combustion strategy employed in this study, lower NOx emission was recorded in premixed combustion than in non-premixed combustion indicating the importance of mixture uniformity for low NOx emission from ammonia combustion. A prototype liner developed to enhance the control and uniformity of the equivalence ratio upstream of the combustor further improved ammonia combustion. With the proposed liner design, NOx emission of 42?ppmv and ammonia combustion efficiency of 99.5% were achieved at 0.3?MPa for fuel input power of 31.44?kW.  相似文献   

12.
分级进风对旋流燃烧室内湍流燃烧的影响   总被引:5,自引:0,他引:5  
本文在分级进风旋流燃烧室的实验台上,测量了在不同的分级进风比率或二次直流风率条件下,湍流旋流燃烧的时均温度场、O_2、CO_2、CO和NO浓度场的分布。通过实验测量结果分析了分级进风对旋流燃烧室内湍流燃烧过程及NOx生成的影响。  相似文献   

13.
新颖化学链燃烧与空气湿化燃气轮机循环   总被引:7,自引:0,他引:7  
本文基于工程热力学和化学环境学的有机结合,注重能源与环境的领域交叉,揭示化学链 燃烧新机理,旨在取代传统的造成能源品位利用最差并且引起环境生态污染(产生SOx、NOx、 CO2等)的燃烧过程,开拓出第三代能源环境动力系统,寻找同时解决能源与环境两个重大问题的 科学途径。  相似文献   

14.
15.
Natural gas (NG) represents a promising low-cost/low-emission alternative to diesel fuel when used in high-efficiency internal combustion engines. Advanced combustion strategies utilizing high EGR rates and controlled end-gas autoignition can be implemented with NG to achieve diesel-like efficiencies; however, to support the design of these next-generation NG ICEs, computational tools, including single- and multi-dimensional simulation packages will need to account for the complex chemistry that can occur between the reactive species found in EGR (including NOx) and the fuel. Research has shown that NOx plays an important role in the promotion/inhibition of large hydrocarbon autoignition and when accounted for in CFD engine simulations, can significantly improve the prediction of end-gas autoignition for these fuels. However, reduced NOx-enabled NG mechanisms for use in CFD engine simulations are lacking, and as a result, the influence of NOx chemistry on NG engine operation remains unknown. Here, we analyze the effects of NOx chemistry on the prediction of NG/oxidizer/EGR autoignition and generate a reduced mechanism of a suitable size to be used in engine simulations. Results indicate that NG ignition is sensitive to NOx chemistry, where it was observed that the addition of EGR, which included NOx, promoted NG autoignition. The modified mechanism captured well all trends and closely matched experimentally measured ignition delay times for a wide range of EGR rates and NG compositions. The importance of C2-C3 chemistry is noted, especially for wet NG compositions containing high fractions of ethane and propane. Finally, when utilized in CFD simulations of a Cooperative Fuels Research (CFR) engine, the new reduced mechanism was able to predict the knock onset crank angle (KOCA) to within one crank angle degree of experimental data, a significant improvement compared to previous simulations without NOx chemistry.  相似文献   

16.
甲烷/富氧扩散火焰燃烧区域的分层特性研究   总被引:1,自引:0,他引:1  
本文对甲烷/富氧扩散火焰燃烧区域的分层特性进行了数值模拟和实验研究,结果表明氧化剂中氧浓度的增加加剧了火焰的分层现象(黄焰层与蓝焰层),使蓝色火焰变厚,并且使NOx生成大量增加;火焰面上的速度梯度主要影响黄色火焰厚度,蓝色火焰随着速度梯度的增加而减小, NOx生成也随之较少。对比温度及火焰结构还表明,研究中所采用的数值模拟方法可以正确地预测对向流扩散火焰特性。  相似文献   

17.
池奕承  张鹏 《气体物理》2019,4(5):32-42
由于日益严重的能源和环境问题,越来越多的研究者开始致力于提高发动机燃烧性能的研究.研究燃烧化学反应机理的目的是为了精确地预测和控制燃烧过程,从而提高燃烧效率,控制火焰稳定性以及优化排放.对于大分子燃料,通常采用类比的方法来估测其反应速率常数以构建其燃烧反应模型,但是这将会为模型带来较大的计算误差.为了更好地将大分子燃料应用在发动机中,对其进行高精度化学反应动力学研究是十分必要的.但是,由于目前广泛使用的高精度电子结构理论计算方法(如CCSD(T)/CBS和QCISD(T)/CBS)在处理这些大分子燃料上存在着巨大的困难,因此文章关注了目前可适用于大分子体系的高精度量化计算方法,并详细地介绍了其中一种适用于大分子体系的高精度量化计算方法ONIOM[QCISD(T)/CBS:DFT].该方法的提出不仅为研究大分子燃料体系的能量计算提供了准确与可行的计算方法,并有助于得到高精度的反应速率常数,对大分子燃料高精度理论热化学研究具有重要意义.   相似文献   

18.
本文在分级进风旋流燃烧室的实验装置上进行了湍流燃烧的实验研究。测量了在不同的一次风旋流数下,气体的时均温度、O2、CO2、CO和NO浓度的分布。利用实验测量结果分析了一次风旋流数对燃烧室内湍流燃烧及NOx生成的影响。  相似文献   

19.
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties.A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance.This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.  相似文献   

20.
In this study, multi-dimensional molecular transport phenomena during Flame-Wall-Interactions (FWI) and their effects on model reduction strategies are investigated. In order to access the problem, the standard configurations of a two-dimensional Side-Wall Quenching (SWQ) flame and a one-dimensional Head-On Quenching (HOQ) flame are used and compared. In the case of the SWQ configuration it is shown that the gradients of the species scatter significantly both in the physical space and in the state space. Moreover, the gradient vector of the specific enthalpy describing energy losses towards the wall is not aligned with the gradient vectors of the species, which can be considered as a typical case while a flame in application might approach to the wall at any arbitrary transversal direction. This observation motivates to take the gradients’ scattering and multi-dimensional transport phenomena into account during model reduction to describe reliably the quenching process.The Reaction-Diffusion Manifold (REDIM) method is applied in this work. The method allows to take into account multi-dimensional transport in a very generic way. In order to generate the REDIM, gradient estimates are approximated by using a Singular-Value Decomposition (SVD) of SWQ detailed gradients fields. Two-dimensional REDIMs for both cases are constructed and compared to each other. Different transport (diffusion) models are implemented to compare quantitatively the manifolds with HOQ and SOQ gradients estimates. The comparison shows that the differences between reduced models with varying transport models is significantly larger than the differences for varying configurations (multidimensional gradient estimates). This justifies the use of a relatively simple REDIM for more complicated geometries and configurations. This simplifies the treatment and model reduction procedure significantly for such complicated transient phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号