首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of isatin hybrids 5a-g was designed, synthesized, and characterized spectroscopically. The synthesized compounds were evaluated for their cytotoxic activity against the human breast cancer cell line (MCF-7) by in vitro MTT assay. Amongst the tested compounds, 5e compound bearing benzyl moiety at N4 piperazine was found to be the most active with the promising IC50 (12.47 µM). Moreover, the active compounds 5e and 5g were subjected to antitumor evaluation (in vivo) against Dalton’s ascitic lymphoma (DAL) cell line and the results suggested that the best active compound 5e can normalize the blood picture in comparison to the standard drug. An in silico molecular docking study using the crystal structure of Hsp90 protein described the role of significant protein–ligand interactions and revealed more insights into the binding mode. The drug-likeliness of the compounds was predicted based on Lipinski's rule of five and pharmacokinetic ADME parameters. Hence, the synthesized isatin hybrids could be novel starting point anticancer lead compounds demonstrating drug-like properties which can be explored further for anticancer drug discovery.  相似文献   

2.
Rutin is a bioactive compound that possesses anti-tumor activities through triggering apoptosis. Triple-negative breast cancer (TNBC) is insensitive to targeted anti-tumoral drugs, and drug resistance in TNBC poses a challenge for a successful cure. The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. This study aimed to find potential ER stress targets in triple-negative breast cancer. The viability of cells was evaluated using an MTT assay. Cell migration and proliferation were done by wound scratch and colony formation assay. Cell cycle detection, measurement of ER stress, mitochondrial membrane potential disruption, and cell death identification was performed using flow cytometry. The interaction of rutin with ER stress proteins is predicted using in silico docking. The pattern of gene expression was determined by qRT-PCR. The elevated rate of cell viability, cell cycle arrest, ER stress, MMP, and apoptotic induction was observed in combination treatment. Rutin exhibited the highest glide score with ASK1 and JNK. The results of qRT-PCR showed that rutin induced apoptosis through upregulation of ASK1 and JNK. The present study provides strong evidence supporting an important role of the ER stress response in mediating rutin-induced apoptosis in triple-negative breast cancer.  相似文献   

3.
A search for anticancer agents has prompted the design and synthesis of new chalcone, pyrazoline and pyrimidine derivatives as potential epidermal growth factor receptor (EGFR) kinase inhibitors. These derivatives’ binding affinities were predicted by AutoDock, which showed that chalcone, pyrazoline and pyrimidine derivatives as EGFR-kinase inhibitors have good binding energies, ranging from ?10.91 to ?7.32 kcal/mol. These compounds were synthesized and characterized using elemental analysis (CHN analysis) and spectroscopic techniques (FTIR and NMR). Among the pyrazoline derivatives, 4Aiii has revealed a superior in vitro activity, inhibiting the EGFR kinase even at a low concentration of 0.19 μM compared to the pyrimidine derivative, 5Bii. In contrast, the cytotoxic effect of these derivatives was studied against hormonal and non-hormonal breast cancer cell lines. Most of the pyrazoline derivatives were able to express their cytotoxic effect efficiently against hormonal breast cancer but only one pyrimidine derivative managed to express its activity against hormonal breast cancer.  相似文献   

4.
A series of transition metal (II/III) complexes containing organometallic Schiff base ligand (H2L) had been synthesized and characterized by using elemental analysis (C, H, N, M), molar conductivity, IR, UV–Vis, 1H NMR and mass spectral analysis. Also, their TG and DTG behaviors were investigated. The ligand was prepared by condensation of 4-aminosalicylic acid with 2-acetylferrocene in 1:1 M ratio. The data of elemental analysis indicated that the prepared complexes were synthesized also in a 1:1 M ratio. The ligand behaved as neutral bidentate ligand that coordinated to metal ions through protonated O-phenolic and protonated carboxylic-OH groups. All complexes had octahedral structure. DFT calculations for H2L ligand were determined with some parameters such as HOMO-LUMO energy gab, electronegativity and chemical hardness–softness. Antimicrobial activity of both H2L Schiff base ligand and its metal complexes was tested against different strains of bacteria and fungi species. Furthermore, all compounds had been screened for their anticancer activities against breast cancer (MCF-7) cell line. [Cu(H2L)(H2O)2Cl2]·2H2O complex had the lowest IC50 value = 47.3 µg/mL. For determining the more effective and probable binding mode between the H2L ligand, Co(II) and Zn(II) complexes with different active sites of 4K3V, 2YLB and 3DJD receptors, so molecular docking studies were investigated.  相似文献   

5.
The docking study on a series of furo[1]benzofuran derivatives with ERα has been demonstrated. The synthesis and characterization of a series of furo[1]benzofuran derivatives were described. All the target compounds were conducted to in vitro for the inhibitory activities against human breast cancer strains T-47D, MCF-7 and toxicity against human liver normal cell strains HL7702 via MTT assay. Most of the target compounds possessed anti-estrogen receptor-dependent breast cancer activities with weak toxicity to healthy cell strains. The preliminary structure–activity relationships were discussed.  相似文献   

6.
In the present study, novel representatives of the important group of biologically-active, dehydroabietic acid-bearing dithiocarbamate moiety, were synthesized and characterized by 1H NMR, 13C NMR, HR-MS. The in vitro antiproliferative activity evaluation (MTT) indicated that these compounds exhibited potent inhibitory activities in various cancer cell lines (HepG-2, MCF-7, HeLa, T-24, MGC-803). Particularly, compound III-b possessed extraordinary cytotoxicity with low micromolar IC50 values ranging from 4.07 to 38.84 µM against tested cancer cell lines, while displayed weak cytotoxicity on two normal cell lines (LO-2 and HEK 293 T). Subsequently, the potential mechanisms of representative compound III-b were elementarily investigated by Transwell experiment, which showed III-b can inhibit cancer cells migration. Annexin-V/PI dual staining showed that the compound can induce HepG-2 cells apoptosis in a dose-dependent manner. Meanwhile this apoptosis may be related to the upregulated protein expression of cleaved-caspase 3, cleaved-caspase 9, Bax and downregulated of Bcl-2 indicated by Western Blot. Later study further confirmed that ROS levels in HepG-2 cells increased significantly with the rise of concentrations. In addition, through the network pharmacology data analyzing, the core targets and signaling pathways of compound III-b for treatment of liver neoplasms were forecasted. Molecular docking model showed that compound III-b had high affinity with hub targets (CASP3, EGFR, HSP90AA1, MAPK1, ERBB2, MDM2), suggesting that compound III-b might target the hub protein to modulate signaling activity. Taken together, these data indicated that dehydroabietic acid structural modification following the “Molecular hybridization” principle is a feasible way to discover the potential multi-targeted antitumor compounds.  相似文献   

7.
The present work contributes to a combined theoretical and experimental investigation on oxyclozanide. The experimental vibrational spectra were characterized by Fourier transform infrared (4000-400 cm?1), Fourier transform Raman (4000-400 cm?1), 1H and 13C NMR were recorded in Deuterated methanol, UV–Vis (200–400 nm) techniques and theoretical optimized molecular geometry, harmonic vibrational spectra, magnetic spectra, and electronic spectra was calculated by Density Functional Theory (DFT) employed with B3LYP/6-311++G(d,p) basis set and compared with experimental data. The highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO) energy was also calculated for the titled compound. The intermolecular interactions have been addressed through Hirshfeld surface analysis. In addition, Natural bond orbital (NBO) analyses of the title compound were performed to evaluate the suitable reactivity site and chemical stabilization behavior, Mulliken atomic charge distribution, and molecular electrostatic potential energy surfaces, were calculated to get a better insight into the structure of oxyclozanide. The experimental and theoretical findings suggest an excellent correlation to confirm the structure of oxyclozanide.  相似文献   

8.
A series of twelve novel hybrids of cinnamic acid and thiocarbohydrazones were designed, synthesized in high yield using a simple coupling strategy via acid chlorides, and evaluated for their impact against Mycobacterium tuberculosis (Mtb) and cancer cells survival. Among them, compound 3 demonstrated strong anti-Mtb activity by reducing bacilli survival for>90 % in all three treated Mtb isolates, whereas isoniazid and rifampicin did not. Moreover, compound 3 didn’t affect vitality of HepG-2 cells, implying on advantageous hepatotoxicity profile compared to current therapeutic options for tuberculosis. Compounds 2a and 3b displayed as strong inducers of apoptosis in A549 cells, both activating intrinsic caspase pathway and cell cycle arrest at the G0/G1 phase. Subsequent analyses disclosed differences in their activities, where 3b has ability to induce production of mitochondrial superoxide anions, while 2a significantly inhibited cellular mobility. More importantly, 3b considerably affected viability of HepG-2 and HaCaT cells, whereas 2a had moderate impact only on the later. Molecular modeling studies indicated high permeability and good absorption through the human intestine, and moderate aqueous solubility with poor blood–brain barrier permeability. In summary, our results reveal that novel compounds 3 and 2a represent promising agents for tuberculosis and cancer treatment, respectively, indicating that further investigation needs to be performed to clarify the mechanisms of their anti-Mtb and anticancer activity.  相似文献   

9.
The frequently severe effects of currently utilized platinum-based complexes have prompted researchers to develop less toxic transition metal based anticancer drugs. Transition metal complexes have recently gained considerable attention as promising anticancer agents due to their efficient drug design and fast optimisation. Some transition metal complexes displayed better anticancer activity than cis-platin. This led to the transition metal complexes for clinical application of chemotherapeutic drugs for cancer therapy. Cytotoxicity of the complexes has been evaluated on the basis of their IC50 values. In this review, we have focussed on recent findings about the anticancer mechanism of action of first row transition metal complexes during the last ten years.  相似文献   

10.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

11.
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug.  相似文献   

12.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

13.
Plant bacteria and viruses have a huge negative impact on food crops in the world. Therefore, it is important to create new and efficient green pesticides. In this paper, a series of myricetin derivatives containing quinazolinone sulfide were introduced. Good antibacterial and antiviral activities of the drug molecules 2-((3-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)propyl)thio)-6-fluoro-3-phenylquinazolin-4(3H)-one (T5) and 2-((4-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)butyl)thio)-6-methyl-3-phenylquinazolin-4(3H)-one (T15) respectively were found by biological activity screening. The value of dissociation constant (Kd) of compound T15 to TMV CP was 0.024 ± 0.006 μM, determined by Microscale thermophoresis (MST), which was far less than the value of 8.491 ± 2.027 μM of commercial drug ningnanmycin (NNM). The interaction between compound T15 and TMV CP was further verified by molecular docking. Compound T15 formed strong hydrogen bonds with residues SER:49 and SER:15 (1.92 Å, 2.20 Å, respectively), which were superior to the traditional hydrogen bonds formed by NNM with residue SER:215 (3.64 Å). In addition, the effects of compound T15 on the contents of chlorophyll and peroxidase (POD) in tobacco were studied, and the results indicated that compound T15 could enhance the disease resistance of tobacco plants to a certain extent.  相似文献   

14.
15.
In this study, a series of trifluoromethyl pyrimidine derivatives 5a-5v were designed and synthesized. All synthetic compounds were original. Bioassay results showed that some of the target compounds were proved to have higher antiviral and antifungal activities than those of commercial agents. Especially, EC50 values of the curative activity of compound 5j and the protection activity of compound 5m were 126.4 and 103.4 µg/mL, respectively, which were lower than that of ningnanmycin. Microscale thermophoresis experiment proved that there was a good interaction between compound 5m and TMV-CP. Meanwhile, the antifungal activity results showed that compound 5u had a significant on in vitro against Rhizoctonia solani (RS) activity, with the EC50 value of 26.0 µg/mL, which was equal to that of azoxystrobin. As well, in vivo experiments on rice leaves showed that compound 5u could effectively control RS, and the effect of 5u on the cell morphology of RS was observed by scanning electron microscopy.  相似文献   

16.
A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4-disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 µM to 1.20 µM, compared to doxorubicin GI50 value = 1.10 µM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking score.  相似文献   

17.
The present study was carried out to design and synthesize a number of novel aromatic carboxamide derivatives of dehydroabietylamine. The preliminary antifungal assay indicated that most of title compounds displayed moderate to good antifungal activity toward the six fungal strains in vitro. Compounds 3i, 3q, 4b and 4d showed significant antifungal activity against Sclerotinia sclerotiorum, with EC50 values ranging from 0.067 ~ 0.393 mg/L. Compounds 3i, 4b and 4d also showed pronounced mycelial growth inhibition activities against B. cinerea and A. solani. Furthermore, in the in vivo assay, compound 4b exhibited brilliant protective activity against S. sclerotiorum-infected rape leaves. Meanwhile, the in vivo bioassay on tomato plants infected by B. cinerea showed that compound 3i and 4d displayed excellent protective activity at 200 mg/L, which were near to boscalid. Primary mechanistic study revealed that 4b could inhibit sclerotia formation as well as reduce the exopolysaccharide level. SEM and TEM analysis indicated that 4b possessed a strong ability to destroy the surface morphology of mycelia, cell structure and seriously interfere with the growth of the fungal pathogen. In addition, 4b exhibited good inhibitory activity (IC50 = 23.3 ± 1.6 μM) toward succinate dehydrogenase (SDH). Molecular modeling study confirmed the binding modes between compound 4b and SDH. The above antifungal results and fungicidal mechanism study revealed that this class of dehydroabietylamine derivatives could be potential SDH inhibitors and lead compounds for novel fungicides development.  相似文献   

18.
Congruous coronavirus drug targets and analogous lead molecules must be identified as quickly as possible to produce antiviral therapeutics against human coronavirus (HCoV SARS 3CLpro) infections. In the present communication, we bear recognized a HIT candidate for HCoV SARS 3CLpro inhibition. Four Parametric GA-MLR primarily based QSAR model (R2:0.84, R2adj:0.82, Q2loo: 0.78) was once promoted using a dataset over 37 structurally diverse molecules along QSAR based virtual screening (QSAR-VS), molecular docking (MD) then molecular dynamic simulation (MDS) analysis and MMGBSA calculations. The QSAR-based virtual screening was utilized to find novel lead molecules from an in-house database of 100 molecules. The QSAR-vS successfully offered a hit molecule with an improved PEC50 value from 5.88 to 6.08. The benzene ring, phenyl ring, amide oxygen and nitrogen, and other important pharmacophoric sites are revealed via MD and MDS studies. Ile164, Pro188, Leu190, Thr25, His41, Asn46, Thr47, Ser49, Asn189, Gln191, Thr47, and Asn141 are among the key amino acid residues in the S1 and S2 pocket. A stable complex of a lead molecule with the HCoV SARS 3CLpro was discovered using MDS. MM-GBSA calculations resulted from MD simulation results well supported with the binding energies calculated from the docking results. The results of this study can be exploited to develop a novel antiviral target, such as an HCoV SARS 3CLpro Inhibitor.  相似文献   

19.
《印度化学会志》2023,100(6):100997
Schiff bases are versatile compounds for the design of the ternary complex. An experiment has been made to synthesize two novel complexes of Co(II). Here, The primary ligand, L1 was prepared by the condensation reaction of o-toluidine with 3-formyl chromone or o-toluidine with 3- methylquinolinecarbaldehyde and the secondary ligand which was 8-Hydroxyquinoline. These potent complexes were prepared by condensation of primary and secondary ligands with Cobalt salt. The reaction was performed through the conventional reflux method. The newly synthesized chromone and quinoline derived novel compounds are proposed to have significant antimicrobial activity against selective strains of bacteria and fungi. This can be great opportunity for researchers and the use of biological applications of the synthesized novel compounds can be a part of unique field of research for the future to be focus. Chromone derivative has great biological diversity in the medicinal and pharmaceutical fields. Along with these compounds, quinoline derivatives also have antibacterial, and antifungal activities. The synthesized ligand and complex were characterized by elemental analysis, molecular weight determination, magnetic moment measurement, melting point determination, spectral analysis (IR, UV–Vis, 1H NMR, Mass, etc.), and X-ray diffraction. The synthesized complexes were paramagnetic and non-electrolytic in nature. The Uv–Vis, FTIR, NMR, and Mass spectra suggest the octahedral geometry of the complexes. The synthesized compounds were further evaluated for biological studies against selected bacterial and fungal strains. It has been observed that the antimicrobial activity of most of the complexes are better than that of ligands.  相似文献   

20.
Free radicals, mostly consist of reactive oxygen species, are generated in human body by several exogenous and endogenous systems. Overproduction of free radicals is known to cause several degenerative disorders including cancer. The aim of this study is to synthesize silver nanoparticles (AgNPs) using root extract of Reynoutria japonica and to investigate its antioxidant and cytotoxic potential. AgNPs were synthesized by green approach and subsequently characterized using UV–vis spectroscopy, SEM, TEM, FTIR, XRD, EDS and DLS. The antioxidant activity was investigated using DPPH, FRAP, H2O2, and ABT?+ radical scavenging assays while the cytotoxic effect was assessed using different human cancer cell lines including lung (A549), liver (Hep-G2) and breast (MDA-MB-231) by MTS assay. Moreover, the specificity of NPs was assessed against two normal human cell lines e.g. alveolar and renal primary epithelial cells (HPAEpiC and HRPTEpiC). The UV–vis spectra confirmed the synthesis of AgNPs by producing a characteristic peak at 410 nm. Further analysis confirmed that AgNPs were crystalline in nature, predominantly spherical in shape, with an average width and area of 17.34 nm and 164.46 nm2, respectively. DLS analysis revealed that NPs possess a high negative zeta potential value (?28.5 mV), thus facilitating its electrostatic stabilization. AgNPs showed dose dependent antioxidant activity against DPPH, FRAP, H2O2 and ABTS with IC50 values 19.25, 22.45, 24.20 and 18.88 µg/ml, respectively. The AgNPs depicted significant cytotoxic effects against A549, Hep-G2 and MDA-MB-231 cell lines with IC50 values of 4.5, 5.1 and 3.46 µg/ml, respectively. Moreover, the NPs exhibited highest selectivity index (>2.0) for A549, Hep-G2 and MDA-MB-231, confirming its specificity towards cancer cell lines. In conclusion, AgNPs prepared from root extract of R. japonica possess strong antioxidant and cytotoxic potential which suggests that they should be investigated further in order to develop safe and effective antioxidant and/or cytotoxic formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号