首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Deep insights into the combustion kinetics of ammonia (NH3) can facilitate its application as a promising carbon-free fuel. Due to the low reactivity of NH3, experimental data of NH3 combustion can only be obtained within a limited range. In this work, nitrous oxide (N2O) and hydrogen (H2) were used as additives to investigate NH3 auto-ignition in a rapid compression machine (RCM). Ignition delay times for NH3, NH3/N2O blends, and NH3/H2 blends were measured at 30 bar, temperatures from 950 to 1437 K. The addition of N2O and H2 ranged from 0 to 50% and 0 to 25% of NH3 mole fraction, respectively. Time-resolved species profiles were recorded during the auto-ignition process using a fast sampling system combined with a gas chromatograph (GC). An NH3 combustion model was developed, in which the rate constants of key reactions were constrained by current experimental data. The addition of N2O affected the ignition of NH3 primarily through the decomposition of N2O (N2O (+M) = N2 + O (+M), R1) and direct reaction between N2O and NH2 (N2H2 + NO = NH2 + N2O, R2). The rate constant of R2 was constrained effectively by experimental data of NH3/N2O mixtures. Two-stage ignition behaviors were observed for NH3/H2 mixtures, and the corresponding first-stage ignition delay times were reported for the first time. Experimental species profiles suggested the first-stage ignition resulted from the consumption of H2. The oxidation of H2 provided extra HO2 radicals, which promoted the production of OH radicals and initiated first-stage ignition. Reactions between HO2 radicals and NH3/NH2 dominated the first-ignition delay times of NH3/H2 mixtures. Moreover, the first-stage ignition led to the fast production of NO2, which acted as a key intermediate and affected the following total ignition. Consequently, the reaction NH2 + NO2 = H2NO + NO (R3) was constrained by total ignition delay times.  相似文献   

3.

The crystal structure of di-(L-serine) phosphate monohydrate [C3O3NH7]2H3PO4H2O is determined by single-crystal x-ray diffraction. The intensities of x-ray reflections are measured at temperatures of 295 and 203 K. The crystal structure is refined using two sets of intensities. It is established that, in the structure, symmetrically nonequivalent molecules of L-serine occur in two forms, namely, the monoprotonated positively charged molecule CH2(OH)CH(NH3)+COOH and the zwitterion CH2(OH)CH(NH3)+COO?, which are linked with each other and with the H2PO ?4 ion through a hydrogen-bond system involving water molecules.

  相似文献   

4.
With the interest in directly burning sour gas in gas turbines, and the fact that even small amounts of H2S or its combustion products can alter combustion characteristics, many research studies have been performed to better understand the combustion chemistry of H2S. In the present study, the water formation was followed by laser absorption with N2O as an oxidant, instead of O2. Nitrous Oxide being essentially consumed via N2O (+M) ⇌ N2 + O (+M), the water formation via the H2S + O route can then be probed to further validate the models. Three H2S/N2O mixtures diluted in 98% Ar were studied to cover the following range of equivalence ratios: 0.5, 1.0, and 2.0, over a wide range of temperatures (1580–1940 K) around atmospheric pressure. A chemical kinetic model was then developed first by validating the base N2O kinetics mechanism, then by investigating the experimental results presented herein. The N2O kinetics mechanism was updated with recent work on the low- and high-pressure limits for N2O decomposition (N2O (+M) ⇌ N2 + O (+M)) as well as a review of rate coefficients for N2O + H ⇌ N2 + OH from the literature. Good agreement is shown for H2/N2O mixtures. Updates were then made to the H2S kinetics mechanism, specifically, an update from the literature on SO2 + H (+M) ⇌ SO + OH (+M) and an adjustment to SO + SH ⇌ S2 + OH. Additionally, reactions between SH and N2O were determined using W1BD data and transition state theory which required the addition of an NNS sub-mechanism. With these updates, the mechanism provides good agreement with the H2S/N2O experiments.  相似文献   

5.
2 , H2O, N2O, and NH3 concentrations in various flowfields using absorption spectroscopy and extractive sampling techniques. An external-cavity diode laser with a tuning range of 1.953–2.057 μm was used to record absorption lineshapes from measured transitions in the CO22 03, ν1+2ν2 03, and 2ν13 bands, H2O ν23and ν12 bands, N2O 2ν1+4ν2 0, ν2 1+2ν3, 3ν1+2ν2 0, and 4ν1 bands, and NH3ν14 and ν34 bands. Measured CO2, H2O, and N2O survey spectra were compared to calculations to verify the HITRAN96 database and used to determine optimum transitions for species detection. Individual lineshape measurements were used to determine fundamental spectroscopic parameters including the line strength, line-center frequency, and self-broadening coefficient of the probed transition. The results represent the first measurements of CO2, H2O, N2O, and NH3 absorption near 2.0 μm using room-temperature near-IR diode lasers. Received: 12 March 1998/Revised version: 7 May 1998  相似文献   

6.
The interaction between ammonia (NH3) and nitric oxide (NO) at high temperatures is studied in this work using a shock tube combined with laser absorption diagnostics. The system simultaneously measured the NH3 and NO time-histories during the reaction processes of the shock-heated NH3/NO/CO/Ar mixtures (NH3:NO ≈ 0.9:1.0 and 1.4:1.0). The absorption cross-sections of NH3 near 1122.10 cm–1 and NO at 1900.52 cm–1 (characterized in this study) were used for measuring NH3 and NO time-histories with the temperature measured by two CO absorption lines. The measured NH3 and NO time-histories at 1614–1968 K and 2.4–2.8 atm were compared with predictions of seven recent kinetics models. The predictions that based on different mechanisms are very different and the measured profiles are within the range of the predictions. The Glarborg, NUI Galway Syngas-NOx, and Mathieu mechanisms give the closest predictions to the measurements. Kinetics analyses indicate that the NH3 and NO consumption rates are extremely sensitive to the rate constants and branching ratio of NH2 + NO = N2 + H2O and NH2 + NO = NNH + OH, which are more reliably represented in the Glarborg and NUI Galway Syngas-NOx mechanisms. The performances of Glarborg mechanisms at lower initial temperatures can be apparently improved by revising the rate constants and branching ratio of NH2 + NO = N2 + H2O and NH2 + NO = NNH + OH. These two reactions are also the primary pathways for NO reduction and NH3 is mainly consumed via NH3 + OH = NH2 + H2O and NH3 + H = NH2 + H2. Trace amounts of NO2 and N2O impurities decompose to form O radical followed by the generation of OH radical via H-abstraction reactions, which significantly affects the predictions of NH3 and NO according to kinetics analyses.  相似文献   

7.
A sulphur based chemical, ([(NH4)2S/(NH4)2SO4]) to which S has been added not previously reported for the treatment of (111)A InAs surfaces is introduced and benchmarked against the commonly used passivants Na2S·9H2O and ((NH4)2S + S), using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxide layer present on the InAs surface is more effectively removed when treated with ([(NH4)2S/(NH4)2SO4] + S) than with ((NH4)2S + S) or Na2S·9H2O. AES depth profiles of the sulphurized layers revealed the formation of a thin (less than 8.5 nm) In–S surface layer for both ((NH4)2SO4 + S) and ([(NH4)2S/(NH4)2SO4] + S) treatments. No evidence for the formation of As―S bonds was found. Treatment with ([(NH4)2S/(NH4)2SO4] + S) also affected a significant improvement compared to the more established sulphur treatments in the surface morphology of the otherwise poor as-received n-InAs (111)A surface.  相似文献   

8.
H2O2 is one of the most important species in dimethyl ether (DME) oxidation, acting not only as a marker for low temperature kinetic activity but also responsible for the “hot ignition” transition. This study reports, for the first time, direct measurements of H2O2 and CH3OCHO, among other intermediate species concentrations in helium-diluted DME oxidation in an atmospheric pressure flow reactor from 490 to 750 K, using molecular beam electron-ionization mass spectrometry (MBMS). H2O2 measurements were directly calibrated, while a number of other species were quantified by both MBMS and micro gas chromatography to achieve cross-validation of the measurements. Experimental results were compared to two different DME kinetic models with an updated rate coefficient for the H + DME reaction, under both zero-dimensional and two-dimensional physical model assumptions. The results confirm that low and intermediate temperature DME oxidation produces significant amounts of H2O2. Peroxide, as well as O2, DME, CO, and CH3OCHO profiles are reasonably well predicted, though profile predictions for H2/CO2 and CH2O are poor above and below ~625 K, respectively. The effect of the collisional efficiencies for the H + O2 + M = HO2 + M reaction on DME oxidation was investigated by replacing 20% He with 20% CO2. Observed changes in measured H2O2 concentrations agree well with model predictions. The new experimental characterizations of important intermediate species including H2O2, CH2O and CH3OCHO, and a path flux analysis of the oxidation pathways of DME support that kinetic parameters for decomposition reactions of HOCH2OCO and HCOOH directly to CO2 may be responsible for model under-prediction of CO2. The H abstraction reactions for DME and/or CH2O and the unimolecular decomposition of HOCH2O merit further scrutiny towards improving the prediction of H2 formation.  相似文献   

9.
V 3O7?H2O nanobelts were prepared by a hydrothermal method at 190 °C using V 2O5?nH2O gel and H2C2O4?2H2O as starting agents. The nanobelts obtained have diameters ranging from 40 to 70 nm with lengths of up to several micrometers. Their morphology and structure have been characterized by XRD, SEM, TEM and IR spectroscopy. The effect of the annealing temperature on the morphology of the resulting product has been investigated. XRD and SEM showed that thermal annealing of the V 3O7?H2O sample in air led to the collapse of the V 3O7?H2O nanobelt structure and the convert into V 2O5 nanobelts. For the first time V 2O5 nanobelts with an ultrahigh aspect-ratio have been obtained in air. Furthermore, electrical conductivity and static magnetic susceptibility measurements have been carried out.  相似文献   

10.
《Physics letters. A》2020,384(21):126533
Molybdenum trioxide (MoO3) with α-phase is a promising material for gas sensing because of its high sensitivity, fast response and thermodynamic stability. To probe the mechanism of superior gas detection ability of MoO3 monolayer, the adsorption and diffusion of H2, H2S, NH3, CO and H2O molecules on two-dimensional (2D) MoO3 layer are studied via density functional theory (DFT) calculations. Based on calculated adsorption energies, density of states, charge transfer, diffusion barriers and diffusion coefficient, MoO3 shows a superior sensitive and fast response to H2 and H2S than CO, NH3, H2O, which is consistent with experimental conclusions. Moreover, the response of MoO3 to H2S and H2 will be obviously enhanced at high gas concentration, and the incorporation of H2 and H2S results in an obvious increasing in DOS near Fermi level. Our analysis provides a conceptual foundation for future design of MoO3-based gas sensing materials.  相似文献   

11.
A detailed effects of catalyst X (X?=?H2O, (H2O)2, NH3, NH3···H2O, H2O···NH3, HCOOH and H2SO4) on the HO4H → O3?+?H2O reaction have been investigated by using quantum chemical calculations and canonical vibrational transition state theory with small curvature tunnelling. The calculated results show that (H2O)2-catalysed reactions much faster than H2O-catalysed one because of the former bimolecular rate constant larger by 2.6–25.9 times than that of the latter one. In addition, the basic H2O···NH3 catalyst was found to be a better than the neutral catalyst of (H2O)2. However it is marginally less efficient than the acidic catalysts of HCOOH, and H2SO4. The effective rate constant (k't) in the presence of catalyst X have been assessed. It was found from k't that H2O (at 100% RH) completely dominates over all other catalysts within the temperature range of 280–320?K at 0?km altitude. However, compared with the rate constant of HO4H → H2O?+?O3 reaction, the k eff values for H2O catalysed reaction are smaller by 1–2 orders of magnitude, indicating that the catalytic effect of H2O makes a negligible contribution to the gas phase reaction of HO4H → O3?+?H2O.

Highlights

  • A detailed effects of catalyst of H2O, (H2O)2, NH3, NH3···H2O, H2O···NH3, HCOOH and H2SO4 on the HO4H → O3?+?H2O reaction has been performed.

  • From energetic viewpoint, H2SO4 exerts the strongest catalytic role in HO4H → O3?+?H2O reaction as compared with the other catalysts.

  • At 0 km altitude H2O (at 100% RH) completely dominates over all other catalysts within the temperature range of 280–320 K.

  • HO4H → H2O?+?O3 reaction with H2O cannot be compete with the reaction without catalyst, due to the fact that the effective rate constants in the presence of H2O are smaller.

  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2217-2220
The catalytic and electrocatalytic decomposition of NH3 was studied at 350–650 °C and atmospheric total pressure, using a single-chamber H+ conducting cell-reactor. The H+ conductor was a strontia–ceria–ytterbia (SCY) perovskite of the form: SrCe0.95Yb0.05O3−a. A Ru film was used as catalyst-electrode. The effects of imposed currents, temperature and inlet gas composition on the reaction rate were examined.  相似文献   

13.
《Surface science》1986,167(1):207-230
A unified electron spectroscopic study of polycrystalline Ti and its interaction with H2, O2, N2, and NH3 are described. Auger electron spectroscopy (AES), electron energy-loss spectroscopy (ELS), ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) are combined to provide detailed information about the electronic structure of the titanium surface and its interaction with these adsorbates. X-ray and ultraviolet photoelectron spectra and electron energy-loss spectra are presented for the clean titanium surface, and following exposure to H2, O2, N2 and NH3. Spectral assignments are provided in each case. The electron spectra of oxygen exposed Ti and nitrogen sputtered Ti are quite similar, and are interpreted with reference to band structure calculations for TiO and TiN. Electron spectroscopy indicates essentially complete dissociative adsorption of NH3 on the clean titanium surface.  相似文献   

14.
We address the role of the linear mixing rule in the kinetics of the H2O2 decomposition system by reporting the rate constant for H2O2 + M = 2OH + M (M = Ar and CO2) in the temperature range of 1087–1234 K at low pressures in a mixture of 20% CO2 in Argon. The reaction rate constant was inferred from H2O concentrations monitored by using a laser-absorption spectroscopy-based water diagnostic. To the best of our knowledge, this is the first measurement of the rate constant of this reaction in a mixture to be reported in literature. A significant discrepancy was found between the rate constants derived using the traditional linear mixing rule and the reduced pressure linear mixing rule. This discrepancy can have serious implications on the predictive accuracy of these kinetic models, especially under conditions relevant to the operation of supercritical CO2 (sCO2) power cycles that rely on oxy-fuel combustion in a working fluid comprised almost entirely of CO2.  相似文献   

15.
A work producing cycle has been developed showing a thermodynamic efficiency considerably higher than that of the Rankine cycle. The new cycle employs a mixture of H2O and NH3 as the working fluid and uses an absorption process similar to that of absorption refrigerators. Its advantage over existing power cycles working with the same mixture (i.e. the Kalina cycle) is simplicity as far as devices, construction, operation and maintenance are concerned. For the detailed calculation of the proposed cycle a method has been developed, which employs analytical functions describing the thermodynamic properties of the NH3/H2O mixture. The proposed cycle has been compared with Rankine cycles working at the same temperature levels. For fixed upper (i.e. superheating) and lower (i.e. condensation) temperatures, the new cycle shows an efficiency 20% higher than that of the Rankine cycle if the boiling temperature is high, while for low boiling temperatures the superiority of the proposed cycle is much more pronounced. A parametric study has also been conducted for the new cycle, wwhich showed, inter alia, that the optimum difference between the mass fractions of the rich and weak solution is about 0.1 kg NH3/kg mixture.  相似文献   

16.
Nanofluid is a kind of new engineering material consisting of solid nanoparticles with sizes typically of 1–100 nm suspended in base fluids. In this study, Al2O3–H2O nanofluids were synthesized, their dispersion behaviors and thermal conductivity in water were investigated under different pH values and different sodium dodecylbenzenesulfonate (SDBS) concentration. The sedimentation kinetics was determined by examining the absorbency of particle in solution. The zeta potential and particle size of the particles were measured and the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to calculate attractive and repulsive potentials. The thermal conductivity was measured by a hot disk thermal constants analyser. The results showed that the stability and thermal conductivity enhancements of Al2O3–H2O nanofluids are highly dependent on pH values and different SDBS dispersant concentration of nano-suspensions, with an optimal pH value and SDBS concentration for the best dispersion behavior and the highest thermal conductivity. The absolute value of zeta potential and the absorbency of nano-Al2O3 suspensions with SDBS dispersant are higher at pH 8.0. The calculated DLVO interparticle interaction potentials verified the experimental results of the pH effect on the stability behavior. The Al2O3–H2O nanofluids with an ounce of Al2O3 have noticeably higher thermal conductivity than the base fluid without nanoparticles, for Al2O3 nanoparticles at a weight fraction of 0.0015 (0.15 wt%), thermal conductivity was enhanced by up to 10.1%.  相似文献   

17.
《Molecular physics》2012,110(21-22):2807-2815
NH3/C2H2 aerosols were formed in a bath gas cooling cell at cryogenic temperatures and studied using infrared spectroscopy. The infrared band shapes associated with these particles were quite different from those of the pure solids and vibrational shifts of up to 100 wavenumbers were observed. The phase of these particles was identified as a NH3?·?C2H2 co-crystal and was found to be thermodynamically stable with respect to the solids of pure NH3 and C2H2. Experiments with core–shell structures demonstrated that the co-crystalline phase could also be formed through a solid state reaction of pure NH3 and C2H2 in aerosol particles. The results of this work are relevant to planetary atmospheres where both NH3 and C2H2 are present, as the co-crystalline phase can readily form in mixed particles of these substances and its optical properties cannot be understood by simply considering the pure substances.  相似文献   

18.
The present work provides new insight into NH3NO interaction under low-temperature conditions. The oxidation process of neat NH3 and NH3 doped with NO (450, 800 ppm) was experimentally investigated in a Jet Stirred Flow Reactor at atmospheric pressure for the temperature range 900–1350 K. Results showed NO concentration is entirely controlled by DeNOx reactions in the temperature range 1100–1250 K, while NH3NO interaction does not develop through a sensitizing NO effect, for these operating conditions.A detailed kinetic model was developed by systematically updating rate constants of controlling reactions and declaring new reactions for N2H2 isomers (cis and trans). The proposed mechanism well captures target species as NO and H2 profiles. For NH3NO mixtures, NO profiles were properly reproduced through updated DeNOx chemistry, while NH2 recombination reactions were found to be essential for predicting the formation of H2. The role of ammonia as a third-body species is implemented in the updated mechanism, with remarkable effects on species predictions. For neat NH3 mixture, the reaction H+O2(+M)=HO2(+M) was crucial to predict NO formation via the reaction NH2+HO2H2NO+OH.  相似文献   

19.
This paper presents a set of experimental and kinetic modelling studies of the flammability limits of partially dissociated NH3 in air at 295 K and 1 atm. The experiments were carried out using a Hartmann bomb apparatus. The kinetic modelling was performed using Ansys Chemkin-Pro with opposed-flow premixed flame model employing three detailed reaction mechanisms, namely, the Mathieu and Petersen, Otomo et al., and Okafor et al. mechanisms. The degree of NH3 dissociation was varied from 0 to 25% (0 to 20%v/v H2 in the fuel mixture with a fixed H2/N2 ratio of 3). It was found that the lower (LFL) and upper (UFL) flammability limits of pure NH3 in air were 15.0%v/v and 30.0%v/v, respectively, consistent with the literature data. The flammability limits of the mixture widened significantly with increasing the degree of NH3 dissociation. At 25% NH3 dissociation, LFL decreased to 10.1%v/v and UFL increased to 36.6%v/v. All tested mechanisms were able to predict the extinction characteristics exhibited by the lean and rich mixtures of partially dissociated NH3 in air with non-unity Lewis numbers. While all three mechanisms predict well LFL, the Otomo et al. mechanism showed the best agreement with the experimental data of UFL. The rate of production of radicals, sensitivity, and reaction path analyses were performed to identify the key elementary reactions and radicals during combustion of partially dissociated NH3. The production of key radicals including OH, H, O, and NH2 was enhanced in the presence of H2 and thus the conversion of NH to NO and then NO to N2 near LFL and the conversion of NH2 and NO to N2 near UFL leading to wider flammability limits.  相似文献   

20.
For collision energies between 100 and 500 eV the collision induced dissociation of H 3 + colliding with H2, He and Kr gas targets was measured. We obtained total cross sections and angular distributions of the charged collision fragments for the main reaction channels. H 3 + +H2→H++2H2 and H 3 + +H2→H 2 + +H2+H. An analysis of the kinetics yields that the dissociation proceeds via vibrational-rotational excitation of H 3 + by mutually induced dipolmoments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号