首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mono-metallic catalysts applied in non-oxidative conversion of methane exhibit low catalyst activity and limited selectivity towards useful petrochemicals. In this study, a series of thermally stable and tunable 5.4 wt% metal/support Fe-W-Mo/HZSM-5 catalyst systems were synthesized, characterized, and applied in non-oxidative conversion of methane in a custom-made stainless-steel reactor at various process conditions. Analysis of products from the reactor was done using Shimadzu 2014 gas chromatograph. Varying the amount of Fe, W, and Mo on HZSM-5 greatly influenced catalyst activity in terms of methane conversion and product distribution. When the quantities of Fe and W were increased to 2.25 wt% each and the quantity of molybdenum reduced to 0.9 wt% in the overall 5.4 wt% metal/ HZSM-5 catalyst, the resultant catalyst system became most active in methane conversion (17.4%) at 800 °C. Reducing the quantity of Fe and W each to 1.35 wt% and increasing Mo to 2.7 wt% in the overall 5.4 wt% catalyst, the resultant catalyst system became less selective towards C2 hydrocarbons and coke, but highly selective towards xylene and benzene. Therefore, this study demonstrates that varying metal loading presents an opportunity to tune the 5.4 wt% binary Fe, W, and Mo on HZSM-5 to achieve desired methane conversion and product distribution.  相似文献   

2.

In this article, nanocrystalline γ-alumina with high surface area (309 m2 g?1) and mesoporous structure with an average pore size of 4.3 nm was synthesized and employed as a carrier for the synthesis of Ni catalysts in steam reforming of methane. The results revealed that the metal–support interaction decreased by increasing the nickel loading and led to the movement of the Tmax of reduction temperature to lower temperatures. The results demonstrated that the synthesized catalysts exhibited high CH4 conversion and stability and increasing the nickel loading up to 10 wt% improved the CH4 conversion. The results revealed that the incorporation of MgO in nickel catalyst improved the resistance of the catalyst against carbon deposition and also enhanced the catalytic activity and the 10%Ni–5%MgO–Al2O3 catalyst exhibited high stability during 60 h. The high stability of the promoted catalyst was related to the high basicity of the catalyst.

  相似文献   

3.
A novel, magnetically recoverable carbonaceous solid acid Fe3O4@C-SO3H catalyst for the conversion of carbohydrates to 5-ethoxymethylfurfural (EMF) was developed. The effect of the DMSO fraction in the ethanol-DMSO binary solvent on the distribution of the reaction products was investigated. The catalyst showed an excellent activity in the synthesis of EMF from fructose and 5-hydroxymethylfurfural (HMF). 5- Ethoxymethylfurfural was also obtained with a high yield of 64.2% in an ethanol–DMSO solvent system via one-step conversion of fructose. After reaction, the catalyst could be recovered by exposure of the reaction mixture to external magnetic field and reused several times without a loss of catalytic activity.  相似文献   

4.
In this study, we have developed a new and green method for the synthesis of 5-hydroxymethylfurfural (HMF) and 5-ethoxymethylfurfural (EMF) from fructose using cellulose sulfuric acid as catalyst. Firstly, HMF was synthesized from fructose, and a high yield of 93.6 % was obtained in DMSO for 45 min in the presence of cellulose sulfuric acid. Cellulose sulfuric acid also showed high catalytic activity for the synthesis of EMF. EMF was obtained in a high yield of 84.4 % by the etherification of HMF under the optimal reaction conditions. More importantly, a high EMF yield of 72.5 % was also obtained from fructose through one-pot reaction strategy, which integrated the dehydration of fructose into HMF and the followed etherification of HMF into EMF. The reaction work-up was very simple and the catalyst could be reused several times without the loss of its catalytic activity.  相似文献   

5.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

6.
Heteropolyacid 12-tungstophosphoric acid H3[PW12O40] (TPA) immobilized over natural bentonite (bent) using the impregnation method. Prepared catalyst were well characterized by XRD, FT-IR and FeSEM. The catalytic activity of three catalysts 10%, 20% and 30% TPA/bent examined for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones known as Biginelli reaction. The catalyst 30% TPA/bent exhibited a high yield of the product towards the synthesis of a variety of dihydropyrimidones (DHPMs). The high yield of dihydropyrimidone (DHPM) was obtained in model reaction in ethanol, acetonitrile and solvent - free condition. The reusability test indicated that 5% of yield of product decreased after 5th cycle.  相似文献   

7.
The Nb-doped TiO2 nanostructure (Nb-TiO2) was prepared as a support of metal catalyst in polymer electrolyte membrane fuel cells. Using the Nb-TiO2 nanostructure support, we prepared the Nb-TiO2 supported catalyst. The Nb-TiO2 supported Pt catalyst (Pt/Nb-TiO2) showed the well dispersion of Pt catalysts (∼3 nm) on the Nb-TiO2 nanostructure supports (∼10 nm). The Pt/Nb-TiO2 showed an excellent catalytic activity for oxygen reduction compared with carbon supported Pt cathode catalyst. The enhanced catalytic activity of Pt/Nb-TiO2 in electrochemical half cell measurement may be mainly due to well dispersion of Pt nanoparticles on Nb-TiO2 nanosized supports. In addition, from XANES spectra of Pt L edge obtained with the supported catalysts, the improved catalytic activity of Pt/Nb-TiO2 for oxygen reduction may be caused by an interaction between oxide support and metal catalyst.  相似文献   

8.
A series of 3 wt% Ru embedded on ordered mesoporous carbon (OMC) catalysts with different pore sizes were prepared by autoreduction between ruthenium precursors and carbon sources at 1123 K. Ru nanoparticles were embedded on the carbon walls of OMC. Characterization technologies including power X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR) were used to scrutinize the catalysts. The catalyst activity for Fischer-Tropsch synthesis (FTS) was measured in a fixed bed reactor. It was revealed that 3 wt% Ru-OMC catalysts exhibited highly ordered mesoporous structure and large surface area. Compared with the catalysts with smaller pores, the catalysts with larger pores were inclined to form larger Ru particles. These 3 wt% Ru-OMC catalysts with different pore sizes were more stable than 3 wt% Ru/AC catalyst during the FTS reactions because Ru particles were embedded on the carbon walls, suppressing particles aggregation, movement and oxidation. The catalytic activity and C5+ selectivity were found to increase with the increasing pore size, however, CH4 selectivity showed the opposite trend. These changes may be explained in terms of the special environment of the active Ru sites and the diffusion of products in the pores of the catalysts, suggesting that the activity and hydrocarbon selectivity are more dependent on the pore size of OMC than on the Ru particle size.  相似文献   

9.
Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydration of C(,monosaccharides into 5-hydroxymethylfurfural(HMF) using dimethyl sulfoxide(DMSO)as solvent.Sulfonic commercial resin Amberlyst-70 was the most active catalyst,which was ascribed to its higher concentration of sulfonic acid sites as compared with the other catalysts,and it gave 93 mol%yield of HMF from fructose in 1 h.With glucose as the starting material,which is a much more difficult reaction,the reaction conditions(time,temperature,and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology,which gave a maximum HMF yield of 33 mol%at 147 °C with 23 wt%catalyst loading based on glucose and 24 h reaction time.DMSO promotes the dehydration of glucose into anhydroglucose,which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions.Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.  相似文献   

10.
The MgO/NaY catalysts prepared by impregnation method were used for the conversion of glucose to fructose in water medium.The effects of MgO loading, reaction temperature, glucose concentration and reaction time on the catalytic performance for the reaction were studied.The activity testing results indicated that fructose could be generated effectively by controlling the components of the catalyst and reaction conditions.The maximal fructose yield of 33.8% with the selectivity of 67.3% was achieved over the 10% MgO/NaY catalyst at 100 ℃ for 2 h.Moreover, the catalysts were characterized by XRD, BET, and CO2-TPD techniques.The structural property of NaY with higher surface area facilitated glucose conversion, and the modulated basicity of the catalyst with MgO addition contributed to the formation of fructose in the tautomerization of aldose to ketose.  相似文献   

11.
Zhang  Xiao-Li  Li  Ning  Qin  Zao  Zheng  Xiu-Cheng 《Research on Chemical Intermediates》2020,46(12):5325-5343

The synthesis of ethyl levulinate (EL) via esterification of levulinic acid (LA) with ethanol, which can be derived from biomass, has become an attractive topic since EL can be applied in many fields, such as fuel additives for petroleum and biodiesel, food additives and fragrance. Herein, the sulfonated porous carbon catalysts derived from the rinds of corn stalk biomass wastes were prepared by using sulfuric acid and phosphoric acid as the sulfonating agent and activator, respectively. The preparation parameters were optimized based on the catalytic activity for LA esterification with ethanol and the acid density of the corresponding catalysts. Also, various reaction factors were optimized to improve the catalytic efficiency over the optimal sulfonated corn stalk-derived carbon (s-CSC). Under the conditions of reaction temperature 80 °C, catalyst dosage 5 wt%, ethanol-to-LA molar ratio 5.0:1 and reaction time 8 h, the LA conversion reached 94% and 93% catalyzed by s-CSC and the optimal porous catalyst (s-p-CSC), respectively. Noticeably, benefitting from the hierarchical porous structure with large surface area, s-p-CSC exhibited much better recyclability than s-CSC. This work offers a highly effective solid acid catalyst for the synthesis of biofuel.

  相似文献   

12.
《Comptes Rendus Chimie》2015,18(3):293-301
Dry reforming of methane has been carried out on SBA-15 catalysts containing 5 wt% Ni and 6 wt% Ce. The effect of the order of Ni and Ce impregnation on the catalytic activity has been studied. Both metals were added using the “two-solvent” method that favors metal dispersion inside the pores. Characterizations by XRD (low and high angles), N2 sorption, SEM and TEM of the materials after metal addition and calcination indicate good preservation of the porosities and high NiO and CeO2 dispersion inside the porous channels. Reduction was carried out before the catalytic tests and followed by TPR measurements. The most active reduced catalyst was the Ni–Ce/SBA-15 sample prepared by impregnating cerium first, then nickel. All catalysts were highly active and selective towards H2 and CO at atmospheric pressure. Full CH4 conversion was obtained below 650 °C. The higher performances compared to those reported in the literature for mesoporous silica with supported Ni and Ce catalysts are discussed.  相似文献   

13.
《Comptes Rendus Chimie》2017,20(1):40-46
This paper focuses on the effect of the La/Co ratio on the structure of alumina cobalt supported catalysts for Fischer–Tropsch synthesis. Catalysts are prepared by wetness impregnation of alumina followed by calcination in air. The catalysts contain 10 wt% of cobalt and between 0 and 20 wt% of La (0, 5, 10, 15, 20). The catalysts were activated by reduction in hydrogen at 673 K and the catalytic performance was evaluated in a fixed bed reactor at 20 bar and 493 K. A wide range of techniques (BET, XRD, TPR, and XPS) were used for catalyst characterization at each preparation step and showed strong impact of the La/Co ratio on the structure, reducibility of supported cobalt phases. It was shown that 10 wt% of lanthanum allows reducing cobalt aluminate and improving catalytic performances.  相似文献   

14.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

15.
采用创新方法制备的ZrO2、TiO2担载氧化铁催化剂在二氧化碳加氢制低碳烃反应中显示出良好的催化活性和产物选择性,由15wt?/ZrO2给出的最佳结果为:CO2转化率为20%,除甲烷以外的低碳烃的选择性接近70%。还考察了金属Fe担载量及催化剂的预还原温度对催化活性的影响,发现催化活性随金属Fe担载量的增加而呈现“双峰”现象,这种现象可能与活性物种(零价铁及配位不饱和的三价或二价铁)在催化剂表面的几何排布有关,而两种催化剂的最佳还原温度分别为723 K(5wt?/ZrO2)和773 K(5wt?/TiO2)。  相似文献   

16.
Designing high-performance and durable non-platinum catalysts as oxygen reduction reaction (ORR) catalysts is still a major barrier of fuel cell commercialization. In this work, simple hydrothermal and impregnation routes were applied to prepare non-platinum Pd-Co bimetallic nano-catalysts such as Fe-N doped graphene quantum dot (Fe-N-GQD) supported Pd3Co (Pd3Co/Fe-N-GQD 10 wt%), carbon supported Pd3Co/C (10 wt%), graphene quantum dot supported Pd3Co/C (10 wt%). The synthesized catalysts were physico-chemically characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electronmicroscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical investigation was carried out in three electrode half-cell system to evaluate the catalyst activity for oxygen reduction reaction (ORR), the tolerance to methanol crossover and durability. In comparison to commercial Pt/C (ETEK, 20 wt%), the Pd3Co/Fe-N-GQD with lower weight percentage catalyst (∼10 wt%) displayed comparable electrocatalytic activity toward ORR with even higher methanol-tolerance capability and durability. The fabricated Pd3Co/Fe-N-GQD with (10 wt %) metal loading exhibited only 20% lower activity than Pt/C (ETEK, 20 wt%) toward ORR. Nevertheless the durability study of the catalyst in acidic media showed that the Pd3Co/Fe-N-GQD preserve 40% of its activity while Pt/C (ETEK, 20 wt%) exhibited only 20% of its initial catalytic activity for ORR. Moreover the activity loss in the presence of methanol (0.1 M) was obtained for Pt/C (ETEK, 20 wt%) and Pd3Co/Fe-N-GQD 35% and 14%, respectively. To investigate the role of catalyst support, catalytic activities of Pd3Co/Fe-N-GQD, Pd3Co/C, Pd3Co/GQD and Pd/Fe-N-GQD were compared. The results demonstrated superior catalytic activity of Pd3Co/Fe-N-GQD which could be related to the cocatalytic role of Fe-N-GQD due to the presence numerous of active sites exposed to the reactants.  相似文献   

17.
Composites with the sulfated perfluoropolymer (SFP) (Nafion, etc.)—mesoporous support composition (SFP/support)—are promising solid acid catalysts with strong acid sites and very stable sulfo groups towards leaching processes. The effect of the SFP on the carbon nanofiber (CNF) (SFP/CNF) composite synthesis method, as well as the precursors of the acid phase, on the key acid catalyst characteristics (specific surface area and concentration and accessibility of the acid sites) is studied. The possibility of the direct composite synthesis from SO2F-polymer latexes obtained as a result of the water emulsion SFP synthesis (without the intermediate stages of isolating the SO3H form) is shown. The acid phase precursor types which are acceptable for the SFP/CNF composite synthesis (the equivalent polymer weight > 580 g/mol) are selected. The effect of the amount of the supported polymer on the total specific surface area and concentration and accessibility of the composite acid site is investigated. The structure of the synthesized composites is studied (by TEM, SAXS, and isopropanol TPD), and their catalytic activity in the test acetic acid esterification reaction is compared to the catalytic activity of pure polymer samples and acetic acid. It is found that the synthesized SFP/CNF samples outperform commercial SFP/SiO2 samples (SAC, DuPont), as well as the SFP/CNF samples prepared using polymer solutions in the SO3H form, in terms of the catalytic characteristics.  相似文献   

18.
Impregnation techniques for corundum (S BET = 0.5 m2/g) as a support for Ni catalysts for C3–C4 alkane pyrolysis into catalytic filamentous carbon (CFC) are compared. The effects of the following factors on the uniformity of the active component (Ni) deposition on the inert support and on the CFC yield (g CFC)/(g Ni) are reported: (1) pH of the nickel nitrate solution, (2) presence of aluminum(III) nitrate in the solution, (3) addition of viscosifying agents (glycerol, glucose, sucrose) to the solution, (4) catalyst calcination conditions before pyrolysis, and (5) catalyst drying technique. The surface morphology of the Ni catalysts and of the carbon deposits resulting from the catalytic pyrolysis of C3–C4 alkanes in the presence of hydrogen has been investigated by scanning electron microscopy. The optimum way of preparing the supported Ni catalysts is by carrying out the incipient wetness impregnation of corundum with a nickel nitrate solution (0.05–0.1 mol/l) containing glycerol (20–25 vol %), drying the product in a microwave oven, and burning away the glycerol before alkane pyrolysis.  相似文献   

19.
刘阳  李小松  刘景林  石川  朱爱民 《催化学报》2014,35(9):1465-1474
考察了Mn含量和水含量对AgMn/HZSM-5(AgMn/HZ)催化剂上室温O3氧化(OZCO)脱除空气中苯的影响. 研究发现,Mn含量为2.4 wt%的AgMn/HZ催化剂(AgMn/HZ(2.4))具有大的比表面积和高的MnOx分散度,OZCO活性和稳定性最高. 反应后的程序升温脱附结果表明,2.4 wt%的Mn含量能有效抑制苯和甲酸在催化剂上的残留. 当Mn含量≤ 2.4 wt%时,催化剂分解O3的活性在苯氧化过程中占主导;当Mn含量 > 2.4 wt%时,苯的活化起主要作用. 基于AgMn/HZ(2.4)催化剂优越的反应活性和稳定性,进一步研究了湿气流中该催化剂上苯的氧化. 与干气流相比,水汽的加入能显著提高催化剂的反应活性和稳定性,且以0.1-0.2 vol%水含量时最优.  相似文献   

20.
In this review, we are reporting the catalytic reforming of liquid hydrocarbon fuels carried out in our research group, covering the catalytic reforming of iso-octane and toluene as surrogate of gasoline, gasoline fuel processor system and steam reforming of n-hexadecane and decahydronaphthalene, main constituents of diesel. The commercial ICI reforming catalyst is prone to be poisoned by sulfur contained in iso-octane. We investigated various supported transition metal formulations and developed Ni/Fe/MgO/Al2O3 (KIST-5) catalyst with prolonged catalytic stability (>760 h), higher activity and sulfur tolerance ability over commercial ICI and HT catalysts for ATR reaction of iso-octane. We found that the concentration of CO can be reduced to <1,800 ppm by the gasoline fuel processor system charged with KIST-5 reforming catalyst, commercial HTS catalyst and KIST Pt–Ni/CeO2 LTS catalyst. The addition of Rh metal to spc-Ni/MgAl catalyst as promoter was found to be very effective in inhibiting the deactivation of spc-Ni/MgAl catalyst by sintering of reduced Ni metal at high temperature during steam reforming of n-hexadecane. A 0.3 wt% Rh loading on spc-Ni/MgAl catalyst was optimized to have the best performance for steam reforming of n-hexadecane among the prepared catalysts. The addition of Rh to spc-Ni/MgAl catalyst also restricted the deactivation of the catalyst due to carbon formation at high reaction temperature. In view point of prolonged stability and higher activity, these developed reforming catalysts have a good scope in the reforming process of gasoline and diesel for hydrogen station and fuel processor system applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号