首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pauli’s principle of bi-division and symmetry reduction “Zweiteilung und symmetrie verminderung” is generalized to cover maximally symmetric spaces specified by Killing’s vector fields and its successive symmetry breaking to yield the particles of the standard model of high energy physics.An analogous picture borrowed from non-linear dynamics and complexity theory will be used to illustrate the conceptual aspect of the procedure from which one could infer, the existence not only of one, but several Higgs particles, possibly three neutral and two charged Higgs with masses not that far from the presently accessible electro-weak energy scale. A tree level estimation with one Higgs to approximate the mass was found to give mH  162 Gev.  相似文献   

2.
In this short paper we discuss some interesting Higgs models. It is concluded that the most likely scheme for the Higgs particles consists of five physical Higgs particles. These are two charged H+, H and three neutrals h0, H0, A0. Further more the most probably total number of elementary particles for each model is calculated [El Naschie MS. Experimental and theoretical arguments for the number of the mass of the Higgs particles. Chaos, Solitons & Fractals 2005;23:1091–8; El Naschie MS. Determining the mass of the Higgs and the electroweak bosons. Chaos, Solitons & Fractals 2005;24:899–905; El Naschie MS. On 366 kissing spheres in 10 dimensions, 528 P-Brane states in 11 dimensions and the 60 elementary particles of the standard model. Chaos, Solitons & Fractals 2005;24:447–57].  相似文献   

3.
The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 < n < 0.5 and for n > 0.5.  相似文献   

4.
This work deals with numerical investigations of the phase space of the planar elliptic restricted three body model. The Sun–Jupiter–Asteroid system is considered and the fast Lyapunov indicator (FLI) is used as a tool to examine various types of orbits on which the infinitesimal mass can undergo. The FLI is computed on given grids of initial conditions regularly spaced in the domain 1.5 AU ? a ? 6 AU and 0 ? e ? 0.5 and for various choices of initial angles: the argument of perihelion ω and mean anomaly M. On the obtained charts the stability regions, the chaotic zones and the geography of resonances are clearly displayed. Moreover, the ‘V’ shaped layers associated with the mean motion resonances of low order with its chaotic zones due to separatrix splitting and libration regions are clearly distinguished. Their size is discussed as a function of the resonance order and the parameters entering into the perturbing function. The results are discussed and compared with analytical studies concerning the subject.  相似文献   

5.
There is a dual transformation between SO(n + 1)?{(00-component) = 0} and SO(n, 1). This transformation makes clear the relations how orthogonal axes look like in two spaces, Euclidean space and Minkowski space.  相似文献   

6.
We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction defined by a term proportional to 1/∣n  mα+1. Continuous medium equation for this system can be obtained in the so-called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz fractional derivative of order α, when 0 < α < 2. Few models of coupled oscillators are considered and their synchronized states and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginzburg–Landau (or nonlinear Schrodinger) equation.  相似文献   

7.
The well-known Masliyah–Lockett–Bassoon (MLB) model for sedimentation of small particles is extended to fluidization of polydisperse suspensions. For N particle species that differ in size and density, this model leads to a first-order system of N conservation laws, which in general is of mixed (in the case N = 2, hyperbolic–elliptic) type. By a simple algebraic steady-state analysis, we derive necessary compatibility conditions on the size and density parameters that admit the formation of stationary fluidized beds. We then proceed to determine the composition of polydisperse fluidized beds of given compatible species by varying the fluidization velocity and the initial composition of the suspensions, and prove that, within the framework of the MLB model combined with the Richardson–Zaki formula, the constructed bidisperse beds always cause the equations to be hyperbolic. This means that these states are always predicted to be stable. The transient behaviour of the MLB model applied to fluidization is illustrated by three numerical examples, in which the system of conservation laws is solved for N = 2, N = 3 and N = 5, respectively. These examples illustrate the effects of bed expansion and layer inversion caused by successively increasing the applied fluidization velocity and show that the predicted fluidized states are indeed attained.  相似文献   

8.
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ? λ ? 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.  相似文献   

9.
Let q be a pattern and let Sn, q(c) be the number of n-permutations having exactly c copies of q. We investigate when the sequence (Sn, q(c))c  0 has internal zeros. If q is a monotone pattern it turns out that, except for q = 12 or 21, the nontrivial sequences (those where n is at least the length of q) always have internal zeros. For the pattern q = 1(l + 1)l…2 there are infinitely many sequences which contain internal zeros and when l = 2 there are also infinitely many which do not. In the latter case, the only possible places for internal zeros are the next-to-last or the second-to-last positions. Note that by symmetry this completely determines the existence of internal zeros for all patterns of length at most 3.  相似文献   

10.
LetEbe a real Banach space with a uniformly convex dual spaceE*. SupposeT:E  Eis a continuous (not necessarily Lipschitzian) strongly accretive map such that (I  T) has bounded range, whereIdenotes the identity operator. It is proved that the Ishikawa iterative sequence converges strongly to the unique solution of equationTx = f,f  E. Our results extend and complement the recent results obtained by Chidume.  相似文献   

11.
We prove the following characterization theorem: If any three of the following four matroid invariants—the number of points, the number of lines, the coefficient of λn  2 in the characteristic polynomial, and the number of three-element dependent sets—of a rank-n combinatorial geometry (or simple matroid) are the same as those of a rank-n projective geometry, then it is a projective geometry (of the same order). To do this, we use a lemma which is of independent interest: If H is a geometry in which all the lines have exactly ℓ  1 or ℓ points and G is a geometry with at least three of the four matroid invariants the same as H, then all the lines in G also have exactly ℓ  1 or ℓ points. An analogue of the characterization theorem holds for affine geometries. Our methods also yield inequalities amongst the four matroid invariants.  相似文献   

12.
This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the normal form theory for local degenerate Hopf bifurcations, 31 and 35 limit cycles and their configurations are obtained for different sets of controlled parameters. It is shown that: H(6)  35 = 62  1, where H(6) is the Hilbert number for sixth-degree polynomial systems.  相似文献   

13.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

14.
In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r < 4n−1 and a rapid decrease for r > 4n−1. In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N0(l) can be described by a power law: N0(l)  lμ. The distance distributions P0(S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P0(S) = a + bS + cS2, and it is quite different from the random sequence.  相似文献   

15.
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1  Ue  5 m/s for the entrance velocity, 2  Dp  50 μm for the droplet diameter, 650  Re  8.500 for Reynolds number, and 0.05  Pi  5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work.  相似文献   

16.
We explore and compare numerical methods for the determination of multifractal dimensions for a doubly-thermostatted harmonic oscillator. The equations of motion are continuous and time-reversible. At equilibrium the distribution is a four-dimensional Gaussian, so that all the dimension calculations can be carried out analytically. Away from equilibrium the distribution is a surprisingly isotropic multifractal strange attractor, with the various fractal dimensionalities in the range 1 < D < 4. The attractor is relatively homogeneous, with projected two-dimensional information and correlation dimensions which are nearly independent of direction. Our data indicate that the Kaplan–Yorke conjecture (for the information dimension) fails in the full four-dimensional phase space. We also find no plausible extension of this conjecture to the projected fractal dimensions of the oscillator. The projected growth rate associated with the largest Lyapunov exponent is negative in the one-dimensional coordinate space.  相似文献   

17.
Experimental and numerical studies are described in which a thin film of air-immersed grains is spun in vertical and tilted containers about their axis. At high rotation rates a steep depression appears around the axis of rotation. Interesting fractal type patterns with dimension D = 1.7 ± 0.05 are observed at the air-grain interfaces in the depression. By utilizing computer simulations, it is shown that the fractal-like patterns may be associated with a sharp deformation of the volume occupied by the particles within the depression hole due to turbulent diffusion.  相似文献   

18.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

19.
The minimum semidefinite rank (msr) of a graph is the minimum rank among positive semidefinite matrices with the given graph. The OS-number is a useful lower bound for msr, which arises by considering ordered vertex sets with some connectivity properties. In this paper, we develop two new interpretations of the OS-number. We first show that OS-number is also equal to the maximum number of vertices which can be orthogonally removed from a graph under certain nondegeneracy conditions. Our second interpretation of the OS-number is as the maximum possible rank of chordal supergraphs who exhibit a notion of connectivity we call isolation-preserving. These interpretations not only give insight into the OS-number, but also allow us to prove some new results. For example we show that msr(G) = |G| ? 2 if and only if OS(G) = |Gzsfnc ? 2.  相似文献   

20.
We have studied the time reversal symmetry violation on the bases of the configuration mixing model and E-infinity theory. With the use of the Cabibbo angle approximation, we have presented the transformation matrix in terms of the golden ratio (?), and shown that the time reversal symmetry violation is described by the configuration mixing of the unstable and stable manifolds (Wu, Ws). The magnitude of the mixing for the weak interaction field is given by the expression sin2 θT(theor)  sin4 θC(theor)  (?)12 = 3.105 × 10?3, which is compared to the Kaon decay experiment ~2.3 × 10?3. We have also discussed the space–time symmetry violation by using the CPT theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号