首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laminar flame propagation was investigated for pentanone isomers/air mixtures (3-pentanone, 2-pentanone and 3-methyl-2-butanone) in a high-pressure constant-volume cylindrical combustion vessel at 393–423 K, 1–10 atm and equivalence ratios of 0.6–1.5, and in a heat flux burner at 393 K, 1 atm and equivalence ratios of 0.6–1.5. Two kinds of methods generally show good agreement, both of which indicate that the laminar burning velocity increases in the order of 3-methyl-2-butanone, 2-pentanone and 3-pentanone. A kinetic model of pentanone isomers was developed and validated against experimental data in this work and in literature. Modeling analysis was performed to provide insight into the flame chemistry of the three pentanone isomers. H-abstraction reactions are concluded to dominate fuel consumption, and further decomposition of fuel radicals eventually produces fuel-specific small radicals. The differences in radical pools are concluded to be responsible for the observed fuel isomeric effects on laminar burning velocity. Among the three pentanone isomers, 3-pentanone tends to produce ethyl and does not prefer to produce methyl and allyl in flames, thus it has the highest reactivity and fastest laminar flame propagation. On the contrary, 3-methyl-2-butanone tends to produce allyl and methyl instead of ethyl, and consequently has the lowest reactivity and slowest laminar flame propagation.  相似文献   

2.
In order to study the combustion chemistry of carboxyl functionality, the laminar burning velocity of acetic acid/air and propanoic acid/air mixtures was investigated in a high-pressure constant-volume cylindrical combustion vessel at 423 K, 1 atm and equivalence ratios of 0.7–1.4. Experimental results reveal that the flame propagation of propanoic acid flame is much faster than that of acetic acid flame, especially under rich conditions, and the laminar burning velocity of propanoic acid/air mixtures peaks at richer conditions than that of acetic acid. The present theoretical calculations for the isomerization and decomposition of propanoic acid radicals indicate that the primary radical products are HOCO, H and C2H5, while those in acetic acid flame are CH3 and OH based on previous studies. A kinetic model of the two acids was developed mainly based on previous and the present theoretical calculation results. It could reasonably capture the measured laminar burning velocities of acetic acid/air and propanoic acid/air mixtures in this work, as well as the previous experimental data in literature. Based on the present model, CH3- and ketene-related pathways play an important role in acetic acid flames. Under rich conditions, ketene is mostly converted to CH3 via CH2CO+HCH3+CO, and the chain-termination reaction of CH3+H(+M)=CH4(+M) is enhanced, which strongly inhibits the propagation of rich acetic acid flames. In contrast, C2H5 and ethylene chemistry play an important role in propanoic acid flames. Rich conditions promote the decomposition of C2H5, yielding ethylene and H, which can facilitate the flame propagation. This can explain the shift of the peak laminar burning velocity of propanoic acid/air mixtures towards a slightly richer condition compared with that of acetic acid/air mixtures.  相似文献   

3.
In order to achieve carbon neutrality, the use of ammonia as a fuel for power generation is highly anticipated. The utilization of a binary fuel consisting of ammonia and hydrogen can address the weak flame characteristics of ammonia. In this study, the product gas characteristics of ammonia/hydrogen/air premixed laminar flames stabilized in a stagnation flow were experimentally and numerically investigated for various equivalence ratios for the first time. A trade-off relationship between NO and unburnt ammonia was observed at slightly rich conditions. At lean conditions, NO reached a maximum value of 8,700 ppm, which was larger than that of pure ammonia/air flames. The mole fraction of nitrous oxide (N2O) which has large global warming potential rapidly increased around the equivalence ratio of 0.6, which was attributed to the effect of a decrease in flame temperature downstream of the reaction zone owing to heat loss to the stagnation wall. To understand this effect further, numerical simulations of ammonia/hydrogen/air flames were conducted using the stagnation flame model for various equivalence ratios and stagnation wall temperatures. The results show that the important reactions for N2O production and reductions are NH +NO = N2O + H, N2O + H = N2 + OH, and N2O (+M) = N2 + O (+M). A decrease in flame temperature in the post flame region inhibited N2O reduction through N2O (+M) = N2 + O (+M) because this reaction has a large temperature dependence, and thus N2O was detected as a product gas. N2O is reduced through N2O (+M) = N2 + O (+M) in the post flame region if the stagnation wall temperature is sufficiently high. On the other hand, it was clarified that an increase in equivalence ratio enhances H radical production and promotes N2O reduction by H radical through the reaction of N2O + H = N2 + OH.  相似文献   

4.
Laminar flame propagation of branched hexene isomers/air mixtures including 3,3-dimethyl-1-butene (NEC6D3), 2,3-dimethyl-1-butene (XC6D1) and 2,3-dimethyl-2-butene (XC6D2) was investigated using a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 373 K and equivalence ratios of 0.7–1.5. The measured laminar burning velocity (LBV) decreases in the order of NEC6D3, XC6D1 and XC6D2, which indicates distinct fuel molecular structure effects. A kinetic model was constructed and examined using the new experimental data. Modeling analyses were performed to reveal fuel-specific flame chemistry of branched hexene isomers. In the NEC6D3 and XC6D1 flames, the allylic CC bond dissociation reaction plays the most crucial role in fuel decomposition under rich conditions, while its dominance is replaced by H-abstraction reactions under lean conditions. The H-abstraction and H-assisted isomerization reactions are concluded to govern fuel consumption in the XC6D2 flame under all investigated conditions. Both C0C3 reactions and fuel-specific reactions are found to be influential to the laminar flame propagation of the three branched hexene isomers. Fuel molecular structure effects were analyzed with special attentions on key intermediates distributions and fuel-specific reactions in all flames. Due to the formation selectivity of key intermediates such as 2-methyl-1,3-butadiene and 2,3-dimethyl-1,3-butadiene, the production of reactive radicals especially H follows the order of NEC6D3 > XC6D1 > XC6D2, which results in the same order of fuel reactivities and LBVs.  相似文献   

5.
Biodiesel is a family of renewable engine fuels with carbon-neutral nature. In this work, three C5H10O2 esters (methyl butanoate, methyl isobutanoate and ethyl propanoate), which can serve as model compounds of biodiesel and represent linear and branched methyl esters and linear ethyl esters, were investigated to characterize their laminar flame propagation characteristics up to 10 atm and unravel the effects of isomeric fuel structures. A high-pressure constant-volume cylindrical combustion vessel was used to achieve laminar burning velocity measurements at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5, while comparative experimental work was performed on a heat flux burner at 1 atm, 393 K and equivalence ratios of 0.7–1.6 for methyl butanoate and ethyl propanoate. The laminar burning velocity generally decreases with increasing pressure and increases in the order of methyl isobutanoate, methyl butanoate and ethyl propanoate, which shows distinct fuel isomeric effects. A kinetic model of C5H10O2 esters was developed and validated against the new data in this work and previous data in literature. Modeling analyses were performed to provide insight into the fuel-specific flame chemistry of the three esters isomers. Remarkable differences in radical pools of three ester isomers are concluded to be responsible for the observed fuel isomeric effects on laminar flame propagation. The feature of two ethyl groups connected to the ester group in ethyl propanoate facilitates the ethyl production and inhibits the methyl and allyl production, making it propagate fastest among the three isomers. The branched structure feature of methyl isobutanoate with methyl and i-propyl groups connected to the ester group prevents the ethyl formation and results in considerable CH3 and allyl production, which decelerates its laminar flame propagation.  相似文献   

6.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

7.
As a carbon-free fuel, hydrogen has received significant attention recently since it can help enable low-carbon-economy. Hydrogen has very broad flammability range and very low minimum ignition energy, and thereby there are severe safety concerns for hydrogen transportation and utilization. Cryo-compressed hydrogen is popularly used in practice. Therefore, it is necessary to investigate the combustion properties of hydrogen at extremely low or cryogenic temperatures. This study aims to assess and interpret the effects of cryogenic temperature on premixed hydrogen/air flame propagation and acceleration in a thin closed channel. Different initial temperatures ranging from normal temperature (T0 = 300 K) to cryogenic temperature (T0 = 100 K) are considered. Both one- and two-dimensional hydrogen/air flames are investigated through transient simulations considering detailed chemistry and transport. It is found that when the initial temperature decreases from T0 = 300 K to T0 = 100 K, the expansion ratio and equilibrium pressure both increase substantially while the laminar flame speeds relative to unburned and burned gasses decrease moderately. The one-dimensional flame propagation is determined by laminar flame speed and thereby the combustion duration increases as the initial temperature decreases. However, the opposite trend is found to happen to two-dimensional flame propagation, which is mainly controlled by the flame surface area increase due to the no-slip side wall constraint and flame instability. Based on the change in flame surface area, three stages including the initial acceleration, steady burning and rapid acceleration are identified and investigated. It is demonstrated that the large expansion ratio and high pressure rise at cryogenic temperatures can significantly increase the flame surface area in early stage and promote both Darrieus-Landau instability (hydrodynamic instability) and Rayleigh-Taylor instability in later stage. These two instabilities can substantially increase the flame surface area and thereby accelerate flame propagation in hydrogen/air mixtures at cryogenic temperatures. The present study provides useful insights into the fundamental physics of hydrogen flames at extremely low temperatures, and is closely related to hydrogen safety.  相似文献   

8.
This study is performed to experimentally examine the fundamental burning velocity characteristics of meso-scale outwardly propagating spherical laminar flames in the range of flame radius rf approximately from 1 to 5 mm for hydrogen, methane and propane mixtures, in order to make clear a method for improving combustion of micro–meso scale flames. Macro-scale laminar flames with rf > 7 mm are also examined for comparison. The mixtures have nearly the same laminar burning velocity (SL0 = 25 cm/s) for unstretched flames and different equivalence ratios ?. The radius rf and the burning velocity SLl of meso-scale flames are estimated by using sequential schlieren images recorded under appropriate ignition conditions. It is found that SLl of hydrogen and methane premixed meso-scale flames at the same rf or the Karlovitz number Ka shows a tendency to increase with decreasing ?, whereas SLl of propane flames increases with ?. However, SLl tends to decrease with the Lewis number Le and the Markstein number Ma, irrespective of the type of fuel and ?. It also becomes clear that the optimum flame size and Ka to improve the burning velocity exist for some mixtures depending on Le and fuel types.  相似文献   

9.
Small methyl ketones are known to have high octane numbers, impressive knock resistance, and show low emissions of soot, NOx, and unburnt hydrocarbons. However, previous studies have focused on the analysis of smaller ketones and 3-pentanone, while the asymmetric 2-pentanone (methyl propyl ketone) has not gained much attention before. Considering ketones as possible fuels or additives, it is of particular importance to fully understand the combustion kinetics and the effect of the functional carbonyl group. Due to the higher energy density in a C5-ketone compared to the potential biofuel 2-butanone, the flame structure and the mole fraction profiles of species formed in 2-pentanone combustion are of high interest, especially to evaluate harmful species formations. In this study, a laminar premixed low-pressure (p?=?40 mbar) fuel-rich (??=?1.6) flat flame of 2-pentanone has been analyzed by vacuum-ultraviolet photoionization molecular-beam mass-spectrometry (VUV-PI-MBMS) enabling isomer separation. Quantitative mole fraction profiles of 47 species were obtained and compared to a model consisting of an existing base mechanism and a newly developed high-temperature sub-mechanism for 2-pentanone. High-temperature reactions for 2-pentanone were adapted in analogy to 2-butanone and n-pentane, and the thermochemistry for 2-pentanone and the respective fuel radicals was derived by ab initio calculations. Good agreement was found between experiment and simulation for the first decomposition products, supporting the initial branching reactions of the 2-pentanone sub-mechanism. Also, species indicating low-temperature chemistry in the preheating zone of the flame have been observed. The present measurements of a 2-pentanone flame provide useful validation targets for further kinetic model development.  相似文献   

10.
Hydrogen–air diffusion flames were modeled with an emphasis on kinetic extinction. The flames were one-dimensional spherical laminar diffusion flames supported by adiabatic porous burners of various diameters. Behavior of normal (H2 flowing into quiescent air) and inverse (air flowing into quiescent H2) configurations were considered using detailed H2/O2 chemistry and transport properties with updated light component diffusivities. For the same heat release rate, inverse flames were found to be smaller and 290 K hotter than normal flames. The weakest normal flame that could be achieved before quenching has an overall heat release rate of 0.25 W, compared to 1.4 W for the weakest inverse flame. There is extensive leakage of the ambient reactant for both normal and inverse flames near extinction, which results in a premixed flame regime for diffusion flames except for the smallest burners with radii on the order of 1 μm. At high flow rates H + OH(+M)  H2O(+M) contributes nearly 50% of the net heat release. However at flow rates approaching quenching limits, H + O2(+M)  HO2(+M) is the elementary reaction with the largest heat release rate.  相似文献   

11.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

12.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

13.
An experimental study on CH4–CO2–air flames at various pressures is conducted by using both laminar and turbulent Bunsen flame configurations. The aim of this research is to contribute to the characterization of fuel lean methane/carbon dioxide/air premixed laminar and turbulent flames at different pressures, by studying laminar and turbulent flame propagation velocities, the flame surface density and the instantaneous flame front wrinkling parameters. PREMIX computations and experimental results indicate a decrease of the laminar flame propagation velocities with increasing CO2 dilution rate. Instantaneous flame images are obtained by Mie scattering tomography. The image analysis shows that although the height of the turbulent flame increases with the CO2 addition rate, the flame structure is quite similar. This implies that the flame wrinkling parameters and flame surface density are indifferent to the CO2 addition. However, the pressure increase has a drastic effect on both parameters. This is also confirmed by a fractal analysis of instantaneous images. It is also observed that the combustion intensity ST/SL increases both with pressure and the CO2 rate. Finally, the mean fuel consumption rate decreases with the CO2 addition rate but increases with the pressure.  相似文献   

14.
The structure of axisymmetric laminar jet diffusion flames of ethane, ethylene, acetylene, and propane in quasi-quiescent air has been studied numerically in normal earth gravity (1g) and zero gravity (0g). The time-dependent full Navier–Stokes equations with buoyancy were solved using an implicit, third-order accurate numerical scheme, including a C3-chemistry model and an optically thin-media radiation model for heat losses. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. For all cases of the fuels and gravity levels investigated, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel with respect to the burner rim depended inversely on the reaction-kernel reactivity or velocity. In the C2 and C3 hydrocarbon flames, the H2–O2 chain reactions were important at the reaction kernel, yet the CH3 + O → CH2O + H reaction, a dominant contributor to the heat-release rate in methane flames studied previously, did not outweigh other exothermic reactions. Instead of the C1-route oxidation pathway in methane flames, the C2 and C3 hydrocarbon fuels dehydrogenated on the fuel side and acetylene was a major hydrocarbon fragment burning at the reaction kernel. The reaction-kernel correlations between the reactivity (the heat-release or oxygen-consumption rate) and the velocity, obtained previously for methane, were developed further for various fuels in more universal forms using variables related to local Damköhler numbers and Peclet numbers.  相似文献   

15.
A premixed methane–air bunsen-type flame is seeded with micron-sized (d32 = 5.6 μm) atomized aluminum powder over a wide range of solid fuel concentrations. The burning velocities of the resulting two-phase hybrid flame are determined using the total surface area of the inner flame cone and the known volumetric flow rate, and spatially resolved flame spectra are obtained with a spectral scanning system. Flame temperatures are derived through polychromatic fitting of Planck’s law to the continuous part of the spectrum. It is found that an increase in the solid fuel concentration changes the aluminum combustion regime from low temperature oxidation to full-fledged flame front propagation. For stoichiometric methane–air mixtures, the transition occurs in the aluminum concentration range of 140–220 g/m3 and is manifested by the appearance of AlO sub-oxide bands and an increase in the flame temperature to 2500 K. The flame burning velocity is found to decrease only slightly with an increase in aluminum concentration, in contrast to the rapid decrease in flame speed, followed by quenching, that is observed for flames seeded with inert SiC particles. The observed behavior of the burning velocity and flame temperature leads to the conclusion that intense aluminum combustion in a hybrid flame only occurs when the flame front propagating through the aluminum suspension is coupled to the methane–air flame.  相似文献   

16.
The laminar flame speed is an important property of a reacting mixture and it is used extensively for the characterization of the combustion process in practical devices. However, under engine-relevant conditions, considerable reactivity may be present in the unburned mixture, introducing thus challenges due to couplings of auto-ignition and flame propagation phenomena. In this study, the propagation of transient, one-dimensional laminar flames into a reacting unburned mixture was investigated numerically in order to identify the parameters influencing the flame burning rate in the conduction-reaction controlled regime at constant pressure. It was found that the fuel chemical classification significantly influences the burning rate. More specifically, for hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned mixture temperature. On the other hand, for n-heptane flames that exhibit low temperature chemistry, the burning rate depends on the instantaneous temperature and composition of the unburned mixture in a coupled way. A new approach was developed allowing for the decoupling the flame chemistry from the ignition dynamics as well as for the decoupling of parameters influencing the burning rate, so that meaningful sensitivity analysis could be performed. It was determined that the burning rate is not directly affected by fuel specific reactions even in the presence of low temperature chemistry whose effect is indirect through the modification of the reactants composition entering the flame. The controlling parameters include but not limited to mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture.  相似文献   

17.
We examine the cellular instabilities of laminar non-premixed diffusion flames that arise in a polycrystalline alumina microburner with a channel wall gap of dimension 0.75 mm. Changes in the flame structure are observed as a function of the fuel type (H2, CH4, and C3H8) and diluent. The oxidizer is O2/inert. In contrast to previous observations on laminar diffusion flame instabilities, the current instabilities occur in the direction of flow above the splitter plate, and only occur for the heavier fuel types. They are not observed in a H2–O2 mixture, which will only support a continuous laminar flame inside our burner, regardless of the initial mixture strength and whether or not the flame is in near-quenching conditions. The only exception is when helium is added to the H2–O2 mixture, raising the effective Lewis numbers of both components.  相似文献   

18.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of three butylbenzene isomers (n-butylbenzene, iso-butylbenzene and tert-butylbenzene)/air mixtures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at the initial temperature of 423 K, initial pressures of 1–10 atm, and equivalence ratios (?) of 0.7–1.5. The laminar burning velocities of butylbenzene/O2/He mixtures were also measured at 423 K, 10 atm and ? = 1.5 to provide additional experimental data under conditions that the butylbenzene/air experiments are susceptible of cellular instability. Comparison among the laminar burning velocities of butylbenzenes including both the three isomers investigated in this work and sec-butylbenzene investigated in our recent work [Combust. Flame 211 (2020) 18–31] shows remarkable fuel isomeric effects, that is, iso-butylbenzene has the slowest laminar burning velocities, followed by n-butylbenzene and tert-butylbenzene, while sec-butylbenzene has the fastest laminar burning velocities. A kinetic model for butylbenzene combustion was developed to simulate the laminar flame propagation of butylbenzenes. Sensitivity analysis was performed to reveal important reactions in laminar flame propagation of butylbenzenes, including both small species reactions and fuel-specific reactions. Kinetic effects are concluded to result in the different laminar burning velocities of four butylbenzene isomers. Small species reactions control the laminar flame propagation under lean conditions, which results in small differences of laminar burning velocities. Chain termination reactions, especially fuel-specific reactions, have important contributions to inhibit the laminar flame propagation under rich conditions. The structural features of butylbenzene isomers can significantly affect the formation of some crucial radicals such as methyl, cyclopentadienyl and benzyl radicals under rich conditions, which leads to remarkable fuel isomeric effects on their laminar burning velocities, especially at high pressures.  相似文献   

19.
Chemical structures of low-pressure premixed flames respectively fueled by two C3 carbonyl isomers, acetone and propanal, at different equivalence ratios (1.0 and 1.5) were experimentally investigated in this work. Detailed speciation information was obtained by employing molecular-beam mass spectrometry with tunable synchrotron photoionization. A detailed kinetic model including the chemistry of acetone and propanal was developed and tested with the current flame speciation measurements. By combining experimental observations and modeling interpretations, comparisons were made regarding fuel-specific reaction pathways and the resulting different species pools. Some fuel-specific intermediates were detected and quantified in this work, such as ketene in acetone flames and methylketene in propanal flames. Particularly, the quantitative speciation measurements of ketene, an important primary intermediate of acetone, were satisfactorily predicted by the current model, which included an updated ketene sub-mechanism. Major efforts in this work were devoted to gaining some insights into the effects of the carbonyl position in fuel molecules on the speciation behaviors under premixed flame conditions. Carbonyl functionalities in the two C3 carbonyl compounds are tightly bonded and preferably preserved in CO. Due to the different position of the CO bond in the two isomers, the oxidation of propanal leads to abundant ethyl as a chain carrier, while the acetone consumption easily results in a significant amount of methyl, an inhibitor on the fuel reactivity. As a result, higher reactivity of propanal was observed. More importantly, the different fuel consumption patterns also influence the speciation behaviors. Specifically, the larger concentration of benzene precursors such as allyl, was observed in the propanal flames. Besides, typical oxygenated emissions formaldehyde and acetaldehyde had more remarkable concentrations in acetone and propanal flames, respectively.  相似文献   

20.
Having a better understanding of polycyclic aromatic hydrocarbon (PAH) formation under flame conditions contributes to optimizing the fuel reforming process, where soot poisons the downstream catalyst. In this work, the phenyl + 1,3-Butadiyne reaction is systematically investigated to examine its contribution to naphthalene formation. The reaction potential energy surfaces were calculated using DFT/M06–2X/cc-pvtz and G4 methods. The temperature- and pressure-dependent reaction rate constants were calculated using RRKM theory with solving master equation. The results revealed that 2-naphthyl could be directly formed by phenyl + 1,3-Butadiyne reaction. With H assistance, naphthalene could be formed by the pathway of phenyl + 1,3-Butadiyne → C6H5CHCCCH (+H) → C6H5CHCHCCH (+H) →naphthalene +H. The proposed pathway is kinetically favorable, and featured by relatively low energy barrier. The importance of the proposed pathway reaction was confirmed in a premixed and a diffusion C2H4/O2/Ar flame simulations, where the enhancement of naphthalene by the investigated reactions is notable. The mole fraction of A2 is promoted by a factor of 10% in premix C2H4/O2/Ar flame and 30% in C2H4/O2/Ar counterflow flame, bringing the prediction results closer to the experimental results. The relative contribution of different reaction route to A2 formation is evaluated for HACA, cyclopentadienyl radical-cyclopentadienyl radical, phenyl-vinylacetylene[1], benzyl radical-propargyl radical, indene-CH2 and phenyl-1,3-Butadiyne routes in premixed and diffusion C2H4/O2/Ar flames. This work suggests that the PAH growth by 1,3-Butadiyne addition reaction is an effective pathway for A2 formation, which should be considered in future PAH mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号