首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
《Tetrahedron: Asymmetry》2006,17(15):2299-2305
Dynamic kinetic resolution (DKR) of a series of secondary alcohols has been conducted with a novel dinuclear ruthenium complex, bearing tetrafluorosuccinate and (rac)-BINAP ligands as the racemization catalyst. Novozym 435 has been used as the enzyme, and isopropyl butyrate as the acyl donor. Five substrates underwent DKR successfully: an aliphatic and an aromatic secondary alcohol, an aromatic alcohol with an electron-withdrawing substituent on the phenyl ring, an aromatic alcohol bearing an electron-donating substituent on the ring and a heteroaromatic secondary alcohol. The catalyst performed optimally at 70 °C. Typically the reaction reached complete conversion within 1 day with 0.1 mol % of racemization catalyst relative to the substrate. The addition of the ketone corresponding to the substrate stabilizes the active Ru complex and, therefore, increases the rate of the reaction.  相似文献   

2.
Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme’s abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process.  相似文献   

3.
Because of the ubiquity of the secondary carbinol subunit, the development of new methods for its enantioselective synthesis remains an important ongoing challenge. In this report, we describe the first nonenzymatic method for the dynamic kinetic resolution (DKR) of secondary alcohols (specifically, aryl alkyl carbinols) through enantioselective acylation, and we substantially expand the scope of this approach, vis-à-vis enzymatic reactions. Simply combining an effective process for the kinetic resolution of alcohols with an active catalyst for the racemization of alcohols did not lead to DKR, due to the incompatibility of the ruthenium-based racemization catalyst with the acylating agent (Ac(2)O) used in the kinetic resolution. A mechanistic investigation revealed that the ruthenium catalyst is deactivated through the formation of a stable ruthenium-acetate complex; this deleterious pathway was circumvented through the appropriate choice of acylating agent (an acyl carbonate). Mechanistic studies of this new process point to reversible N-acylation of the nucleophilic catalyst, acyl transfer from the catalyst to the alcohol as the rate-determining step, and carbonate anion serving as the Br?nsted base in that acyl-transfer step.  相似文献   

4.
Pentaphenylcyclopentadienyl ruthenium complexes (3) are excellent catalysts for the racemization of secondary alcohols at ambient temperature. The combination of this process with enzymatic resolution of the alcohols results in a highly efficient synthesis of enantiomerically pure acetates at room temperature with short reaction times for most substrates. This new reaction was applied to a wide range of functionalized alcohols including heteroaromatic alcohols, and for many of the latter, enantiopure acetates were efficiently prepared for the first time via dynamic kinetic resolution (DKR). Different substituted cyclopentadienyl ruthenium complexes were prepared and studied as catalysts for racemization of alcohols. Pentaaryl-substituted cyclopentadienyl complexes were found to be highly efficient catalysts for the racemization. Substitution of one of the aryl groups by an alkyl group considerably slows down the racemization process. A study of the racemization of (S)-1-phenylethanol catalyzed by ruthenium hydride eta(5)-Ph(5)CpRu(CO)(2)H (8) indicates that the racemization takes place within the coordination sphere of the ruthenium catalyst. This conclusion was supported by the lack of ketone exchange in the racemization of (S)-1-phenylethanol performed in the presence of p-tolyl methyl ketone (1 equiv), which gave <1% of 1-(p-tolyl)ethanol. The structures of ruthenium chloride and iodide complexes 3a and 3c and of ruthenium hydride complex 8 were confirmed by X-ray analysis.  相似文献   

5.
(S)‐Selective kinetic resolution was achieved through the use of a commercially available protease, which was activated with a combination of two different surfactants. The kinetic resolution (KR) process was optimized with respect to activation of the protease and to the acyl donor. The KR proved to be compatible with a range of functionalized sec‐alcohols, giving good to high enantiomeric ratio values (up to >200). The enzymatic resolution was combined with a ruthenium‐catalyzed racemization to give an (S)‐selective dynamic kinetic resolution (DKR) of sec‐alcohols. The DKR process works under very mild reaction conditions to give the corresponding esters in high yields and with excellent enantioselectivities.  相似文献   

6.
Enzymatic acylation is commonly used for the kinetic resolution of alcohols and amines. The simple acyl group introduced during the enzymatic reaction is usually removed or replaced by another group. Retention of more complex acyl moieties as part of the target structures would be a more efficient strategy. We have studied the enantioselective acylation of a model alcohol substrate, 1-phenylethanol, with vinyl esters bearing various functionality on the acyl moieties in the presence of three lipases (Candida antarctica, Candida rugosa and Burkholderia cepacia) frequently used in organic synthesis. C. antarctica lipase is the most versatile lipase for this type of biotransformations. We applied this strategy to the synthesis of a protein kinase C ligand and a natural product, phoracantholide.  相似文献   

7.
(R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) was found to function as an efficient acyl-transfer catalyst for the kinetic resolution of racemic secondary benzylic alcohols in the presence of achiral carboxylic acids and pivalic anhydride. The use of a tertiary amine in this reaction is not necessary to attain good chemical yields of the products. It was determined that diphenylacetic acid could be employed as the most suitable acyl donor for achieving a high enantioselectivity for the kinetic resolution of the racemic secondary benzylic alcohols having normal aliphatic alkyl chains at the C-1 positions. On the other hand, a less-hindered carboxylic acid, such as 3-phenylpropanoic acid, functioned as a better acyl donor for the kinetic resolution of racemic secondary benzylic alcohols having branched aliphatic alkyl chains at the C-1 positions.  相似文献   

8.
H Nakata 《Tetrahedron》1963,19(12):1959-1963
Oxidation of steroid alcohols by ruthenium tetroxide gives corresponding ketones in almost quantitative yields. The reaction provides a simple and convenient procedure for converting secondary alcohols to ketones in neutral media. The reconversion of ruthenium dioxide, produced during the oxidation, into the tetroxide with an appropriate oxygen donor such as sodium metaperiodate makes possible the oxidation of a given steroid alcohol to a ketone in the presence of a catalytic amount of ruthenium tetroxide.  相似文献   

9.
A new and efficient dynamic kinetic resolution (DKR) process of secondary aromatic alcohols was developed with acid resins as racemization catalysts. Acid resin CD8604 was shown to have excellent racemization activity and good biocompatibility. When employing CD8604 and complex acyl donors as racemization catalyst and acyl donor, respectively, enantiomerically pure aromatic acetate was obtained with excellent yield and ee values through the DKR process. It is noteworthy that the system could be reused more than 10 times with little loss of yield and ee value.  相似文献   

10.
ABSTRACT

The use of a phase transfer catalyst, benzyltriethylammonium chloride (BTEAC), is described in conjunction with the ruthenium dioxide/periodate : water/chloroform system for the oxidation of carbohydrate alcohols to the corresponding ketone, aldehyde, or carboxylic acid. The method was found to be applicable to carbohydrates appropriately protected as acetals, ethers, or containing a benzoyloxy group not positioned to readily undergo β-elimination. While the method was very suitable for the oxidation of carbohydrate secondary alcohols to ketones, it was found to be less suitable for the oxidation of a carbohydrate primary alcohol to the corresponding aldehyde or carboxylic acid. Evidence presented suggests that under the mildly basic conditions of the reaction, ruthenium tetraoxide is converted to ruthenate and perruthenate ions in the aqueous solution and then the perruthenate ion is carried by the phase transfer catalyst into the organic layer where oxidation of the substrate occurs. A number of examples illustrating the scope of the method are presented.  相似文献   

11.
《Tetrahedron: Asymmetry》2001,12(23):3267-3271
Aminoacylase (E.C. 3.5.1.14) from Aspergillus melleus mediated the acylation of the primary amino group in a range of primary arylalkylamines and amino alcohols in anhydrous organic medium. The commonly used vinyl and isopropenyl esters proved to be unsuitable acyl donors because rapid uncatalysed aminolysis occurred in the presence of these additives. The unwanted aminolysis reaction could be suppressed by performing the enzymatic reaction in tert-butyl methyl ether medium with methyl 2-methoxyacetate as the acyl donor. We found that chiral amines were acylated with poor to moderate enantioselectivity, in contrast with the quantitative enantiodiscrimination that is commonly observed with the corresponding alcohols.  相似文献   

12.
Recently, sugar polymers have been considered for use as biomaterials in medical applications. These biomaterials are already used extensively in burn dressings, artificial membranes, and contact lenses. In this study, we investigated the optimum conditions under which the enzymatic synthesis of sorbitan methacrylate can be affected using Novozym 435 in t-butanol from sorbitan and several acyl donors (ethyl methacrylate, methyl methacrylate, and vinyl methacrylate). The enzymatic synthesis of sorbitan methacrylate, catalyzed by Novozym 435 in t-butanol, reached an approx 68% conversion yield at 50 g/L of 1,4-sorbitan, 5% (w/v) of enzyme content, and a 1∶5 molar ratio of sorbitan to ethyl methacrylate, with a reaction time of 36 h. Using methyl methacrylate as the acyl donor, we achieved a conversion yield of approx 78% at 50 g/L of 1,4-sorbitan, 7% (w/v) of enzyme content, at a 1∶5 molar ratio, with a reaction time of 36 h. Sorbitan methacrylate synthesis using vinyl methacrylate as the acyl donor was expected to result in a superior conversion yield at 3% (w/v) of enzyme content, and at a molar ratio greater than 1∶2.5. Higher molar ratios of acyl donor resulted in more rapid conversion rates. Vinyl methacrylate can be applied to obtain higher yields than are realized when using ethyl methacrylate or methyl methacrylate as acyl donors in esterification reactions catalyzed by Novozym 435 in organic solvents. Enzyme recycling resulted in a drastic reduction in conversion yields.  相似文献   

13.
Novel planar chiral ferrocene nucleophilic catalysts (Fc-PIP) containing both central and planar chiral elements were designed and synthesized for catalytic enantioselective acyl transfer of secondary alcohols. A remarkably efficient catalyst with high selectivity factors (up to S = 1892) was identified. Comparing the combination of central and planar chirality revealed a strong requirement for the "matched" chiral elements, indicating that the stereogenic center of the imidazole rings should present itself on the same face as the ferrocenyl fragment; otherwise, the catalyst is completely inactive. An exclusively stacked transition state that accounts for the high selectivity of the kinetic resolution of secondary alcohols is proposed. Notably, this newly designed catalyst family is suitable for the catalytic kinetic resolution of bulky arylalkyl carbinols, producing esters with extremely high ee (>99%).  相似文献   

14.
Dichlorotris(triphenylphosphine)ruthenium(II) catalyzes the hydrogen transfer from alcohols to olefins. Kinetic studies were carried out at 170–190°C using the ruthenium(II) complex as homogeneous catalyst, benzyl alcohol, diphenylcarbinol, methylphenylcarbinol and benzoin as the hydrogen donors, benzylideneacetone as the hydrogen acceptor, and dibenzyl ether as a solvent. The IR spectra and GLC were used to monitor the reaction and the isotope effects were determined in order to elucidate the role of the catalyst and the mechanism of hydrogen transfer. In the reaction mixture RuCl2(PPh3)3 is converted by the alcohols into RuH2(CO) (PPh3)3, which then hydrogenates benzylideneacetone. The kinetic data are compatible with the expression. reaction rate = kobs[Ru][olefin][alcohol] The rate-determining step of this reaction is considered to be the transfer of hydrogen from the alcohol to a ruthenium species.  相似文献   

15.
A new procedure for the dynamic kinetic resolution (DKR) of racemic alcohols into single enantiomers is described. This procedure employs surfactant-treated subtilisin as an (S)-selective resolving catalyst and an aminocyclopentadienylruthenium complex as a racemizing catalyst. The DKR is performed best in the presence of an acyl donor such as trifluoroethyl butyrate in THF at room temperature. Eight simple secondary alcohols have been efficiently resolved with high optical purities and good yields. The subtilisin-based DKR is complementary in stereoselectivity to its lipase-based counterpart. For an acyl-carrying alcohol, both subtilisin- and lipase-based DKRs have proceeded equally well to give a pair of enantiomeric products (>99.5% ee each) with opposite optical rotations in high yields (94-95%).  相似文献   

16.
The ruthenium‐catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning.  相似文献   

17.
The dynamic kinetic resolution of racemic mixtures of tropic acid ethyl ester under substrate racemizing conditions was studied using lipase PS with a ruthenium catalyst. Isopropenyl acetate was used as an acyl donor, since it was found to be compatible with both catalysts; this resulted in an efficient dynamic kinetic resolution. With this process, a variety of racemic tropic acid ethyl esters were transformed to optically active acetoxy-2-arylpropionic acid ethyl esters with 60-88% yields and 53-92% ee.  相似文献   

18.
1-Ethoxyvinyl esters 3, a new type of acyl donors for enzymatic resolution of racemic alcohols, were disclosed to be superior to the contemporary major reagents, vinyl esters 1 and isopropenyl esters 2. Three features of 3 are noticeable: (1) 3 generates ethyl acetate as a single coproduct, which does not affect any enzymes, while acetaldehyde liberated from 1 deactivates some kinds of lipases. (2) The reactivity of 3 was not less than that of 1 and much higher than that of 2, and the optical purity of the products was as high as that of 1 and 2. Especially, it was generally observed that 3 showed higher reactivity than 1 for reactions using Candida rugosa lipases, one of the most commonly employed lipases, having liberal applicability to substrates but sensitive to acetaldehyde. Twelve examples of the kinetic resolution of racemic secondary alcohols (5 and 10) and one desymmetrization of meso-alcohol 7 were presented employing the acetate 3a or the octanoate 3b and four types of lipases. (3) A one-pot procedure for the preparation of 3 from the corresponding carboxylic acid and the subsequent enzymatic resolution of alcohols, which has not been reported using 1 or 2, was elucidated. The chemical and optical yields of the products by this procedure were similar to those obtained using isolated 3.  相似文献   

19.
Three kinds of hydrogen-transfer reactions, namely racemization of chiral secondary alcohols, reduction of carbonyl compounds to alcohols using 2-propanol as a hydrogen donor, and isomerization of allylic alcohols to saturated ketones, are efficiently promoted by the easily prepared and inexpensive supported ruthenium catalyst Ru(OH)x/Al2O3. A wide variety of substrates, such as aromatic, aliphatic, and heterocyclic alcohols or carbonyl compounds, can be converted into the desired products, under anaerobic conditions, in moderate to excellent yields and without the need for additives such as bases. A larger scale, solvent-free reaction is also demonstrated: the isomerization of 1-octen-3-ol with a substrate/catalyst ratio of 20,000/1 shows a very high turnover frequency (TOF) of 18,400 h(-1), with a turnover number (TON) that reaches 17,200. The catalysis for these reactions is intrinsically heterogeneous in nature, and the Ru(OH)x/Al2O3 recovered after the reactions can be reused without appreciable loss of catalytic performance. The reaction mechanism of the present Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions were examined with monodeuterated substrates. After the racemization of (S)-1-deuterio-1-phenylethanol in the presence of acetophenone was complete, the deuterium content at the alpha-position of the corresponding racemic alcohol was 91%, whereas no deuterium was incorporated into the alpha-position during the racemization of (S)-1-phenylethanol-OD. These results show that direct carbon-to-carbon hydrogen transfer occurs via a metal monohydride for the racemization of chiral secondary alcohols and reduction of carbonyl compounds to alcohols. For the isomerization, the alpha-deuterium of 3-deuterio-1-octen-3-ol was selectively relocated at the beta-position of the corresponding ketones (99% D at the beta-position), suggesting the involvement of a 1,4-addition of ruthenium monohydride species to the alpha,beta-unsaturated ketone intermediate. The ruthenium monohydride species and the alpha,beta-unsaturated ketone would be formed through alcoholate formation/beta-elimination. Kinetic studies and kinetic isotope effects show that the Ru-H bond cleavage (hydride transfer) is included in the rate-determining step.  相似文献   

20.
The electrophilic α-alkylation of ketones with alcohols is accomplished by a hydrogen autotransfer process catalyzed by RuCl2(DMSO)4. The reaction can produce either simple alkylated ketones or α,β-unsaturated ketones just by choosing the appropriate starting ketones (methyl ketones or bicyclic methylenic ketones, respectively), as well as quinolines (by using 2-aminobenzyl alcohol derivatives) or the corresponding alcohol derivatives by the addition of an extra equivalent of the initial alcohol. In the last case, after the above alkylation process reduction of the carbonyl compound takes place. A mechanistic study seems to indicate that the process goes through the oxidation of the alcohols with ruthenium (after a previous deprotonation) to yield the corresponding aldehyde and a ruthenium hydride intermediate. In turn, the aldehyde suffers a classical aldol reaction with the starting ketone to form the corresponding α,β-unsaturated ketone, which finally is reduced through a Michael-type addition by the aforementioned ruthenium hydride intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号