首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors.  相似文献   

2.
Yiqun Geng 《Tetrahedron》2008,64(22):4949-4958
Diverse 2,3-oxazolidinone protected 2-amino-2-deoxy-d-glucose thioglycosides were prepared and studied as glycosyl donors at low temperature by BSM/Tf2O pre-activation protocol before the addition of glycosyl acceptors. The stereochemistry outcomes of a series of glycosylations were investigated. Different stereoselectivities of the coupling reactions were obtained, arising from the different protecting groups in the oxazolidinone donors. 4,6-Di-O-benzyl-N-benzyl-oxazolidinone protected thioglycoside donor 1c underwent glycosylation with general β-anomeric selectivity and the stereoselectivity could be also affected by glycosylation conditions.  相似文献   

3.
Thioglycosides are used frequently as glycosyl donors and as mimetics of O-glycosides. While being very useful, thioglycosides are prone to a detrimental side reaction referred to as aglycon transfer. In this letter, it is shown that aglycon transfer can be blocked by matching thioglycoside-containing acceptors with more armed glycosyl donors.  相似文献   

4.
Glycosyl sulfonium ions, which serve as persistent glycosyl cation equivalents, were prepared by the addition of diorganosulfides to an electrochemically generated glycosyl triflate. Low-temperature and variable-temperature NMR studies were performed to reveal the structure, stability, and reactivity of glycosyl sulfonium ions. The glycosyl sulfonium ions could be used as storable intermediates for reactions with various glycosyl acceptors including thioglycosides to give the corresponding disaccharides.  相似文献   

5.
[reaction: see text] Novel glycosyl donors, S-benzoxazolyl (SBox) glycosides, have been synthesized, tested toward various protecting group manipulations, and applied to the highly stereoselective 1,2-cis glycosylation. These compounds fulfill the requirements for a modern glycosyl donor such as accessibility, high stability toward protecting group manipulations, and mild activation conditions. It was also demonstrated that SBox glycosides withstand other glycosyl donor activation conditions and therefore allow selective glycosylations of O-pentenyl and thioglycosides.  相似文献   

6.
High yielding synthesis of six- and five-membered N-substituted iminosugar glycosides and of five-membered iminosugar thioglycosides by nucleophilic opening of both new and previously described N-diethoxycarbonylvinyl anhydroiminosugar derivatives (glycosyl donors) with primary alcohols, primary thiols, and thiophenol (glycosyl acceptors) is reported. The reactions are highly stereoselective, with anomeric ratios better than 4:1.  相似文献   

7.
Thioglycosides have been employed extensively for the synthesis of complex oligosaccharides, carbohydrate libraries, and mimetics of O-glycosides. While very useful, aglycon transfer is a problematic side reaction with thioglycosides. In this paper, a series of mechanistic studies are described. The aglycon transfer process is shown to affect both armed and disarmed thioglycosides, cause anomerization of the carbon-sulfur bond of a thioglycoside, and destroy the product of a glycosylation reaction. The results indicate that the aglycon transfer process can be a major problem for a wide range of thioglycosides. This side reaction is especially important to consider when carrying out complex reactions such as solid-phase glycosylations, one-pot or orthogonal multicomponent glycosylations, and construction of carbohydrate libraries. To prevent transfer, a number of modified aglycons were examined. The 2,6-dimethylphenyl (DMP) aglycon was found to effectively block transfer in a variety of model studies and glycosylation reactions. The DMP group can be installed in one step from a commercially available thiol (2,6-dimethylthiophenol) and is useable as a glycosyl donor. On the basis of these features, the DMP group is proposed as a convenient and improved aglycon for thioglycosides.  相似文献   

8.
An efficient methodology for the synthesis of aryl 1,2-cis-furanosidic linkages has been developed with 2-quinolinecarbonyl (Quin) group substituted furanose ethyl thioglycosides as glycosyl donors. The method permits a wide range of phenol acceptors to be used, thus resulting in the formation of structurally diverse phenol furanosides in good to excellent chemical yields with complete 1,2-cis anomeric selectivity. The synthetic utility of the approach has been demonstrated by concise preparation of the carbohydrate portion of antibiotic hygromycin A.  相似文献   

9.
Disaccharide nucleosides constitute an important group of naturally‐occurring sugar derivatives. In this study, we report on the synthesis of disaccharide nucleosides by the direct O‐glycosylation of nucleoside acceptors, such as adenosine, guanosine, thymidine, and cytidine, with glycosyl donors. Among the glycosyl donors tested, thioglycosides were found to give the corresponding disaccharide nucleosides in moderate to high chemical yields with the above nucleoside acceptors using p‐toluenesulfenyl chloride (TolSCl) and silver triflate (AgOTf) as promoters. The interaction of these promoters with nucleoside acceptors was examined by 1H NMR spectroscopic experiments.  相似文献   

10.
Differentially protected glycosyl phosphates prepared by a straightforward synthesis from glycal precursors are used as powerful glycosyl donors. Activation of beta-glycosyl phosphates by TMSOTf at -78 degrees C achieves the selective formation of beta-glycosidic linkages in excellent yields with complete stereoselectivity. Reaction with thiols results in the conversion of glycosyl phosphates into thioglycosides in nearly quantitative yield. An orthogonal coupling strategy using glycosyl phosphate donors and thioethyl glycoside acceptors allows for the rapid synthesis of a trisaccharide.  相似文献   

11.
The development of an alternative promoter system for thioglycoside activation comprising N-iodosuccinimide (NIS) and acid-washed molecular sieves (AW-300 MS) has been studied and found to mediate high-yielding coupling with a variety of glycosyl acceptors. The utility of this combination is further exemplified by its application to reactivity-based coupling of thioglycosides and sequential one-pot regioselective glycosylation.  相似文献   

12.
Tatai J  Fügedi P 《Organic letters》2007,9(22):4647-4650
Dimethyl disulfide reacts with triflic anhydride to provide a highly reactive electrophile. Various thioglycosides, differing in their thio aglycons, carbohydrate units, and protecting group pattern, were activated with Me2S2-Tf2O in the presence of different glycosyl acceptors. The reactions proceeded at low temperatures within a short time, affording oligosaccharides in high yields both on primary and secondary hydroxyls. Armed and disarmed glycosyl donors were activated equally efficiently.  相似文献   

13.
Synthesis of a fluorescently labelled (dansylated) linear α(1→6)-linked octamannan, using glycosyl fluoride donors and thioglycosyl acceptors, is described. A selective and convergent two-stage activation progression was executed to construct di-, tetra, and octa-mannosyl thioglycosides in three glycosylation steps with excellent yield. Further, a 5-N,N-dimethylaminonaphthalene-1-sulfonamidoethyl (dansyl) group was coupled to 1-azidoethyl octamannosyl thioglycoside. Global deprotection of the coupled product afforded the desired dansylated homo-linear α(1→6)-linked octamannan.  相似文献   

14.
An efficient methodology for the synthesis of α‐Kdo glycosidic bonds has been developed with 5,7‐O‐di‐tert‐butylsilylene (DTBS) protected Kdo ethyl thioglycosides as glycosyl donors. The approach permits a wide scope of acceptors to be used, thus affording biologically significant Kdo glycosides in good to excellent chemical yields with complete α‐selectivity. The synthetic utility of an orthogonally protected Kdo donor has been demonstrated by concise preparation of two α‐Kdo‐containing oligosaccharides.  相似文献   

15.
We have discovered an unusual α-galactosylation using phenylthioglycoside of 4,6-O-di-tert-butylsilylene (DTBS)-protected galactose derivatives as a glycosyl donor, which was not hampered by the neighboring participation of C-2 acyl functionality such as NTroc and OBz. The power of the DTBS effect has been exemplified by the coupling reaction with various glycosyl acceptors.  相似文献   

16.
Glycosyl triflates, which serve as important intermediates in glycosylation reactions, were generated and accumulated by the low-temperature electrochemical oxidation of thioglycosides such as thioglucosides, thiogalactosides, and thiomannosides in the presence of tetrabutylammonium triflate (Bu(4)NOTf) as a supporting electrolyte. Thus-obtained solutions of glycosyl triflates (glycosyl triflate pools) were characterized by low-temperature NMR measurements. The thermal stability of glycosyl triflates and their reactions with glycosyl acceptors were also examined.  相似文献   

17.
We have identified silver tetrafluoroborate (AgBF4) as an excellent promoter for the activation of various glycosyl donors including glycosyl halides, trichloroacetimidates, and thioimidates. Easy handling and no requirement for azeotropic dehydration prior to application makes AgBF4 especially beneficial in comparison to the commonly used AgOTf. Selective activation of glycosyl halides or thioimidates over thioglycosides or n-pentenyl glycosides, including simple sequential one-pot syntheses, has also been demonstrated. Versatility of glycosyl thioimidates was further explored by converting these intermediates into a variety of other classes of glycosyl donors.  相似文献   

18.
[reaction: see text] Alkoxycarbenium ions have been generated and accumulated as "cation pools" by the low-temperature electrochemical oxidation of alpha-phenylthioethers. Although an unsuccessful attempt to accumulate glycosyl cations was made, a one-pot method for electrochemical glycosylation, which involves anodic oxidation of thioglycosides to generate glycosyl cation equivalents followed by their reactions with glycosyl acceptors, has been developed.  相似文献   

19.
Reported herein is a new protocol for glycosidation of alkyl and aryl thioglycosides in the presence of copper(II) bromide. While the activation with CuBr2 alone was proven suitable for reactive glycosyl donors, the activation of less reactive donors was more efficient in the presence of triflic acid as an additive. A variety of thioglycoside donors in reactions with different glycosyl acceptors were investigated to determine the initial scope of this reaction.  相似文献   

20.
A 2-O-benzyl-3,5-O-benzylidene-alpha-d-thioarabinofuranoside was obtained by reaction of the corresponding diol with alpha,alpha-dibromotoluene under basic conditions. On activation with 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride in dichloromethane at -55 degrees C, reaction with glycosyl acceptors affords anomeric mixtures with little or no selectivity. The analogous 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-d-thioarabinofuranoside also showed no significant selectivity under the 1-benzenesulfinyl piperidine or diphenyl sulfoxide conditions. With N-iodosuccinimide and silver trifluoromethanesulfonate the silylene acetal showed moderate to high beta-selectivity, independent of the configuration of the starting thioglycoside. High beta-selectivity was also obtained with a 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-arabinofuranosyl sulfoxide donor on activation with trifluoromethanesulfonic anhydride. The high beta-selectivities obtained by the N-iodosuccinimide/silver trifluoromethanesulfonate and sulfoxide methods are consistent with a common intermediate, most likely to be the oxacarbenium ion. The poor selectivity observed on activation of the thioglycosides with the 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride methods appears to be the result of the formation of a complex mixture of glycosyl donors, as determined by low-temperature NMR work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号