首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effects of the molecular structure on the corrosion inhibition efficiency are investigated by nine methods of calculations. The selected thio compounds were previously identified as corrosion inhibitors for mild steel in the 1.0 M HCl solution. The electronic properties such as highest occupied molecular orbital (EHOMO) energy, lowest unoccupied molecular orbital (ELUMO) energy, dipole moment (μ), and Fukui indices are calculated and discussed. Results show that the corrosion inhibition efficiency increase with the increase in both EHOMO and μ values, respectively, and decrease in ELUMO. QSAR approach is utilized in this study; a good relationship is found between the experimental corrosion inhibition efficiency (IEexp, %) and the theoretical corrosion inhibition efficiency (IEtheor, %). The calculated inhibition efficiency is found closer to the experimental inhibition efficiency with a coefficient of correlation (R 2) of 0.875.  相似文献   

2.
BackgroundThe environmental and economic benefits have been the driving force in search of efficient corrosion inhibitors for iron/steel used in industrial acidic medium. This study reports on berberine isolated from methanol extract of high-altitude (1347 m) shrub Mahonia nepalensis as a highly efficient and thermally stable corrosion inhibitor for mild steel (MS) in 1.0 M H2SO4 simulating acid pickling condition.MethodsThe weight-loss and electrochemical methods revealed the fast adsorption of berberine.Significant Findings: It achieved above 91% inhibition efficiency (IE) in 0.25 h and reached 94% in 6 h for 1000 ppm berberine. The IE increased with concentration and temperature, giving an IE of 97.2% at 328 K, which makes it a promising candidate for industrial application. It behaved as a mixed type of inhibitor as revealed by open circuit potential and polarization curves. The results indicated suppression of the corrosion by effectively forming an adsorbed berberine layer on the MS surface. Adsorption of the berberine followed a Langmuir adsorption isotherm. The thermodynamic parameters such as activation energy (43.19 kJ/mol), free energy (−35.05 kJ/mol), enthalpy (40.55 kJ/mol), and entropy (−97.83 J/molK) of adsorption supported both physical and chemical interactions of berberine with MS surface. The obtained results also revealed that the adsorption process was endothermic and spontaneous in nature.  相似文献   

3.
As corrosion inhibitors, a series of new amide derivatives of 13‐docosenoic acid was synthesized in yields of above 90% by reacting 13-docosenoic acid with primary and secondary aliphatic and aromatic amines. The inhibition efficiencies (%IEs) of these compounds at various concentrations for the suppression of corrosion of mild steel in 1.00 M HCl exposed for 96 h (4 days) at temperatures in the range 298–333 K were measured via gravimetric corrosion measurements. At 100 ppm, all compounds yielded satisfactory corrosion %IE in 1.00 M HCl; compounds 2 and 7 exhibited remarkable %IE of 70.0 and 74.7%, respectively. The results of gravimetric measurements further revealed that compound 7 performed excellently at 60 °C, with %IE = 96.8 at 500 ppm. Quantum chemical density functional theory (DFT) calculations helped predict that compound 7 should have more aromatic character, enabling it to serve as a donor-center for the empty d-orbital of the metal atoms, leading to higher corrosion IE. The adsorption of the inhibitor molecules on the surface of mild steel followed the Langmuir adsorption model, and the free energy of adsorption (ΔGads) value indicated that the inhibitors are adsorbed through a combined physisorption and chemisorption mechanism to provide effective surface coverage.  相似文献   

4.
This work is intended to examine the microbially influenced corrosion on galvanized steel (GS) caused by sulfate-reducing bacteria (SRB). The efficacy of Butea monosperma (palash) leaf extract to mitigate the corrosion caused by Desulfovibrio desulfuricans was investigated in modified Barr's medium. Weight loss and electrochemical analysis were performed to check the corrosion rate at regular time intervals. SEM images were performed to understand the level of deterioration of the metal surfaces. Image analysis of the unprotected sample showed the presence of pits. From the gravimetric study, the maximum inhibition efficiency (IE) of 98% was obtained with 500 ppm of Palash leaf extract for the fourth-week sample. With the addition of 500 ppm of palash extract, the sulfide concentration decreases to 0 ppm from 123 ppm. Outcomes of potentiodynamic polarization (PP) studies showed that the extract disturbs the cathodic reaction significantly and moves the corrosion potential to a more negative value and IE was about 71% from PP studies. FTIR and GC-MS analysis was performed to recognize the plausible chemical compounds present in Palash leaf powder. EIS results confirmed that the resistance to corrosion increases substantially with the addition of inhibitor. The mechanism for corrosion inhibition has been proposed based on the results obtained.  相似文献   

5.
The inhibitive action of ethanol extracts from leaves (LV), bark (BK) and roots (RT) of Nauclea latifolia on mild steel corrosion in H2SO4 solutions at 30–60 °C was studied using weight loss and gasometric techniques. The extracts were found to inhibit the corrosion of mild steel in H2SO4 solutions and the inhibition efficiencies of the extracts follow the trend: RT > LV > BK. The inhibition efficiency increased with the extracts concentration but decreased with temperature rise. Physical adsorption of the phytochemical components of the plant on the metal surface is proposed as the mechanism of inhibition. The adsorption characteristics of the inhibitor were approximated by the thermodynamic-kinetic model of El-Awady et al.  相似文献   

6.
《Comptes Rendus Chimie》2019,22(5):355-362
In this study, the effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid (HCl) solution was investigated by using dodecyl trimethyl ammonium chloride (DTAC), tetradecyl trimethyl ammonium chloride (TTAC), cetyl trimethyl ammonium chloride (CTAC), and octadecyl trimethyl ammonium chloride (OTAC) as corrosion inhibitors to uncover their structure–efficiency relationships. The effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in HCl solution was studied under different conditions, such as corrosion inhibitor concentration, temperature, and acidity, and this was done using the weightlessness method. The results obtained show that these inhibitors have high corrosion inhibition effect on A3 steel, and the corrosion inhibition efficiency is dependent on the length of the alkyl chain. At the same concentration, the longer the alkyl chain, the weaker the corrosion inhibition effect. When the temperature was 50 °C and the concentration of corrosion inhibitor was 70 mg/L, the corrosion inhibition efficiency order of the four cationic surfactants was DTAC > TTAC > CTAC > OTAC. Besides, the experimental results obtained show that the adsorption of the inhibitor on the A3 steel surface conforms to the Langmuir type isotherm, and then the corresponding adsorption thermodynamic parameters were obtained according to these parameters. It was observed that ΔH, ΔS, and Ea increased with increase in the length of the alkyl chain. The adsorption of the inhibitor on the steel surface is an exothermic, spontaneous, entropy process.  相似文献   

7.
2-Allyl-p-mentha-6,8-dien-2-ols P1P3 synthesized from carvone P are tested as corrosion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption process are calculated and discussed. EIS measurements show the increase of the charge-transfer resistance with the inhibitor concentration. The highest inhibition efficiency (92%) is obtained for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding activation energies are determined.  相似文献   

8.
N-pyridinium salt derivatives (15) were prepared and investigated as corrosion inhibitors for mild steel in 1 M H2SO4 solution at 30°C for 24 h. The corrosion inhibiting action was studied using weight loss measurements. The results demonstrated that the corrosion rate decreases, inhibition efficiencies increase, and surface coverage degree increases with increasing inhibitor concentration. Inhibition efficiencies for prepared N-pyridinium salt derivatives have highest inhibiting efficiency for even low concentration. The values of ΔGads° showed physisorption effect for all prepared compounds. Molecular modeling systems were achieved for suggested inhibitors 1–5. Theoretical calculations could be used as a useful tool to obtain information for explaining the mechanism and nature of interaction between the metal surface and the organic molecule as a corrosion inhibitor.  相似文献   

9.
In this study, the corrosion performance of carbon steel samples in 0.5 M sulfuric acid by the addition of novel inhibitors, 200 ppm of (25% and 50%) titanium dioxide nanoparticles in benzalkonium chloride, was thoroughly investigated. Gravimetric measurements, cyclic and linear potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and hydrogen collection by water displacement evaluated inhibition performance. Analogously, TiO2/ILB (50%), TiO2/ILB (75%), and ILB inhibitors enhanced corrosion protection with over 80% inhibition efficiency in electrochemical tests. In addition, weight loss and hydrogen collection measurements reached comparable results. According to potentiodynamic polarization curves, inhibitors exhibited dual behavior, but cathodic protection was more predominant. Scanning electron microscopy (SEM) was employed to examine the surface morphology before and after immersion using corrosion tests. The correlation between electronic properties and inhibition efficiencies of tilted inhibitors was determined by simple linear regression. Electronic properties were calculated for neutral and protonated forms using a polarizable continuum model by the DFT method at the B3LYP/6-311+G (d, p) level of theory. The active adsorbed sites of HM1-HM3 on the metal surface were determined by analyzing their corresponding electrostatic surface potentials (ESP). Furthermore, molecular dynamics simulations were performed to illustrate the most conceivable adsorption configuration between the inhibitors and metal surfaces.  相似文献   

10.
The inhibiting behavior of bis-(2-benzothiazolyl)-disulfide on mild steel corrosion was evaluated in 1?M HCl solution. Weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques were used in this study. In EIS technique, by performing Kramers–Kronig transformations, the experimental results validated, before fitting any theoretical model on them. The obtained results showed that the inhibition efficiency (%IE) increases by increasing the concentration of bis-(2-benzothiazolyl)-disulfide up to 2.02?×??0???M (%IE?~??2??8). Between the results obtained from various used techniques, a good agreement was found. Polarization curves indicate that the inhibition of the inhibitor is a mixed anodic–cathodic nature and Langmuir isotherm is found as an accurate isotherm describing the adsorption behavior. It also found that its inhibition mechanism of bis-(2-benzothiazolyl)-disulfide is at the interval of physical adsorption and chemical binding. The inhibition efficiency of the inhibitor decreased by rising of temperature in the range of 25??5?°C and these results, verified adsorption behavior of the inhibitor.  相似文献   

11.
12.
13.
Effect of Mobile Phase on Electrospray Ionization Efficiency   总被引:1,自引:0,他引:1  
Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity. Graphical Abstract
?  相似文献   

14.
The corrosion behaviour of copper in aerated 3% NaCl solution was investigated by rotating electrode at various rates. The reduction of O2 obeys the Levich equation. The inhibition of the copper corrosion in aerated 3% NaCl solution was studied by using potentiodynamic polarisation and linear polarisation resistance (LRP) in the presence of different concentrations of a bipyrazolic compound named N,N-bis (3-carbomethoxy-5-methylpyrazol-1-ylmethyl) cyclohexylamine (BiPyA). The presence of this compound in the solution decreases the corrosion current density and increases the linear resistance polarisation. The inhibition efficiencies obtained from cathodic Tafel plots and LRP methods are in good agreement. BiPyA compound presents an efficient inhibitor of copper corrosion, acts as a mixed-type inhibitor and adsorbs on the copper surface according to the Langmuir isotherm model.  相似文献   

15.
Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2’-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N’1, N’3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10−5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298–328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors.  相似文献   

16.
Corrosion inhibition efficiencies of 1,4-dihydroquinoxaline-2,3-dione (Q1) and 2-phenylthieno[2,3-b]quinoxaline (Q2) as corrosion inhibitors against the corrosion of steel surface in hydrochloric acid is studied by means of density functional approach B3LYP/6-31G calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (E HOMO), lowest unoccupied molecular orbital energy (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), the fraction of electrons transferred (?N), the global electrophilicity ω, and the total energy were calculated. All calculations have been performed by considering density functional theory using the GAUSSIAN03W suite of programs.  相似文献   

17.
Inhibition of CO2 corrosion of mild steel in 0.5 M NaCl under atmospheric pressure at 40 °C as well as high pressure (10 bar) at 120 °C by 2-[2-methyl-4(or 5)-alkylisoxazolidin-5(or 4)-yl)methyl]succinic acids, a new class of molecules having inhibitive motifs of succinic acid, isoxazolidine and hydrophobic alkyl chain assembled in a single entity, has been examined by gravimetric and electrochemical methods. Inhibitor molecule containing CH3(CH2)8 outperformed its counterpart with a shorter hydrophobe CH3(CH2)4 and two other commercial imidazoline-based inhibitors. The effectiveness of these new inhibitors was also evaluated by electrochemical impedance spectroscopy. The inhibition efficiency by EIS was found to be 75%, 91% and 98% in the presence of 1, 5 and 20 ppm, respectively, at 40 °C. The potentiodynamic polarization studies indicated that the new inhibitors act as anodic inhibitors. The adsorption of the synthesized inhibitors follows Temkin adsorption isotherm model with favorable high values of –ΔG°ads and −ΔH°ads pointing the inhibitors adsorbed on the metal surface by chemisorption process. The XPS study confirmed the adsorption of the inhibitors on the metal surface.  相似文献   

18.
Electrochemical measurements were performed to investigate the effectiveness and adsorption behaviour of aminobiphenyl (Aph) and 2-(3-hydroxybenzylideneamino)biphenyl (Aph-S), as corrosion inhibitors for mild steel (MS) in 0.5 M HCl solution. Potentiodynamic polarization, linear polarization resistance (LP) and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of Aph and Aph-S. In order to gain more information about adsorption mechanism the AC impedance technique was used to evaluate the potential of zero charge (PZC) from polarization resistance (Rp) versus voltage (E) plot. Potentiodynamic polarization measurements showed that Aph act as cathodic type inhibitor where as Aph-S act mixed type. The inhibition efficiency (IE%) increases with increasing concentration of compounds and reached 92.6% for Aph and 97.2% for Aph-S at 5 × 10−3 M. Double layer capacitance (Cdl) and polarization resistance (Rp) values are derived from Nyquist plots obtained from AC impedance studies. The experimental data fit Langmuir isotherm for both Aph and Aph-S, and from the adsorption isotherm some thermodynamic data for the adsorption processes are calculated and discussed. The effect of exposure time on the corrosion behaviour of mild steel in the absence and presence of inhibitor over 168 h was also studied.  相似文献   

19.
Two new silver(I) pyrazine complexes [Ag2(ampyz)(NO3)2]n, 1 and {[Ag(2,3-pyzdic)](NO3)}n, 2 (where ampyz = aminopyrazine, and 2,3-pyzdic = 2,3-pyrazinedicarboxamide) were synthesized and structurally characterized by X-ray single crystal structure analysis. Complex 1 has a 2D sheet structure through both bridging μO,O-(NO3) groups and μN,N-pyrazine moieties. A 3D structure with a characteristic (10,3)-d or 103-utp net is formed through extensive hydrogen bonding. Complex 2 has a 1D chain structure through bridging μN,N-pyrazine moieties. Strong hydrogen bonds further connect these chains to extend the dimensionality to a 3D network structure. The complexes were tested as corrosion inhibitors for mild steel in 0.1 M nitric acid medium using potentiodynamic polarization technique. Both complexes are of mixed type corrosion inhibitors with dominant anodic effect. The inhibition efficiencies are 68% and 50% for complexes 1 and 2, respectively. The inhibition mechanisms of both inhibitors are mainly due to adsorption of the inhibitor molecules on the surface of mild steel. All data were compared and fitted to the kinetic-thermodynamic model. The binding constants K are 3263 and 1147 for complexes 1 and 2, respectively.  相似文献   

20.
The corrosion inhibition of aluminum and its alloys is the subject of tremendous technological importance due to the increased industrial applications of these materials. This study reports the results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) on the corrosion inhibition of AA6061 aluminum alloys in seawater using sodium benzoate as an inhibitor. The electrochemical measurements for aluminum alloys in seawater after varied immersion period showed that the presence of sodium benzoate significantly decreases the corrosion currents densities (icorr), corrosion rates and double layer capacitance (Cdl), as simultaneously increase the values of polarization resistance (Rp). Charge transfer process and development of thin film on the specimen have been proven by morphology study using SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号