首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rotating detonation engines and explosion accidents, detonation may propagate in an inhomogeneous mixture with inert layers. This study focuses on detonation propagation in a stoichiometric H2/O2/N2 mixture with multiple inert layers normal to the detonation propagation direction. One- and two-dimensional simulations considering detailed chemistry are conducted. The emphasis is placed on assessing the effects of inert layer on detonation reinitiation/failure, detonation propagation speed, detonation cell structure and cell size. Specifically, the inert layer thickness and the spacing between two consecutive inert layers are varied. Either detonation reinitiation or failure across the inert layers is observed. It is found that successful detonation reinitiation occurs only at relatively small values of the inert layer thickness and spacing. For each given value of the inert layer spacing, there is a critical inert layer thickness above which detonation fails after crossing the inert layers. This critical inert layer thickness is found to decrease as the inert layer spacing increases. The detailed process of detonation reinitiation across the inert layers is analyzed. The interaction between the transverse shock waves is shown to induce local autoignition/explosion and eventually over-driven detonation development in the reactive layer. The averaged detonation propagation speed in the inhomogeneous mixture is compared to the CJ speed and very good agreement is achieved. This indicates that the inert layer does not affect the detonation propagation speed once successful detonation reinitiation happens. Unlike the detonation speed, the detonation cell structure and cell size are greatly affected by the inert layer results. For the first time, large cellular structure with size linearly proportional to the inert layer spacing is observed for detonation propagation across inert layers. Besides, a double cellular structure is observed for relatively large spacing between inert layers. The formation of double cellular structure is interpreted.  相似文献   

2.
爆轰波在静止气体或定常来流中的传播得到了广泛研究, 然而在扰动来流中的传播研究较少。这方面的研究不仅是爆轰传播机制的重要组成部分, 还可为爆轰发动机的应用提供参考。文章基于两步诱导-放热总包反应模型, 开展了一维爆轰波在正弦密度扰动来流中的传播数值模拟。通过对数值结果分析, 获得了放热反应控制参数与爆轰波内在不稳定性的关系, 并在此基础上研究了扰动波长和幅值对一维爆轰波动力学过程的影响。研究发现, 在波前施加连续扰动会诱导爆轰波表现出更复杂的动力学行为, 且影响过程与爆轰波的内在不稳定性相关。对于稳定爆轰波, 扰动只在特定波长范围内引起前导激波后的压力振荡。对于不稳定爆轰波, 扰动会进一步强化其内在不稳定性。扰动幅值越大, 对爆轰波动力学过程的影响越显著。   相似文献   

3.
A comprehensive numerical study was carried out to investigate the unsteady cell-like structures of oblique detonation waves (ODWs) for a fixed Mach 7 inlet flow over a wedge of 30° turning angle. The effects of grid resolution and activation energy were examined systematically at a dimensionless heat addition of 10. The ODW front remains stable for a low activation energy regardless of grid resolution, but becomes unstable for a high activation energy featuring a cell-like wave front structure. Similar to the situation with an ordinary normal detonation wave (NDW), a continuous increase in the activation energy eventually causes the wave-front oscillation to transit from a regular to an irregular pattern. The wave structure of an unstable ODW, however, differs considerably from that of a NDW. Under the present flow condition, triple points and transverse waves propagate downstream, and the numerical smoke-foil record exhibits traces of triple points that rarely intersect with each other. Several instability-driving mechanisms were conjectured from the highly refined results. Since the reaction front behind a shock wave can be easily destabilized by disturbance inherent in the flowfield, the ODW front becomes unstable and displays cell-like structures due to the local pressure oscillations and/or the reflected shock waves originating from the triple points. The combined effects of various instability sources give rise to a highly unstable and complex flow structure behind an unstable ODW front.  相似文献   

4.
空气中激光支持爆轰波实验及理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究激光击穿空气产生的等离子体爆轰波形成机制和传播规律,利用高能量CO2激光器产生强激光,进行了空气中产生激光支持等离子体爆轰波实验。实验中:设置了诱导靶板,用于诱发和定位空气中的激光支持爆轰波;以激光器升压过程球隙放电产生的光信号作为触发源,触发高时间分辨率(纳秒级)的高速相机,记录了激光支持爆轰波的成长和传播全过程。分析了激光支持爆轰波的形成机理和传播规律。采用C-J爆轰理论,计算了激光支持爆轰波的压力和温度。研究结果表明:激光支持等离子体爆轰波形成初期,等离子体爆轰波发光体为球形;随着时间增加,等离子体爆轰波发光体的形状类似流星,且头部为等离子体前沿吸收层,亮度较高,而尾部等离子体温度较低,亮度较弱。等离子体爆轰波高速向激光源的方向移动,爆轰波速度高达18 km/s,温度约为107K。随着激光强度的减弱,爆轰波速度迅速按指数规律衰减,当爆轰波吸收的激光能量不能有效支持爆轰波传播时,爆轰波转变为冲击波。  相似文献   

5.
A study was conducted to examine detonation propagation in a stratified layer of hydrogen-oxygen-nitrogen above an inert gas in a horizontal narrow channel. The stratified layer was produced by a gravity current, generated by retracting a door initially separating a hydrogen-oxygen-nitrogen mixture in the predetonator and a heavier inert gas in the test-section. A steady detonation wave generated in the predetonator was transmitted into the stratified layer. The reactivity of the predetonator mixture was varied via the hydrogen-oxygen equivalence ratio and the amount of nitrogen dilution. Schlieren photography was used to visualize the detonation front in the test-section, and soot foils were used to obtain the cellular structure. Schlieren imaging showed a curved detonation front that decoupled at about mid channel height, into a shock wave and trailing contact surface. Both the hydrogen-oxygen-nitrogen reactivity and the type of inert gas initially in the test-section affected the distance travelled by the detonation wave in the stratified layer. The mixture composition distribution within the test-section before ignition was obtained via a three-dimensional CFD simulation. The lateral extent of the cellular structure captured on the soot foil, coincided with the calculated inert gas mole fraction contour that corresponds to a sharp increase in the ZND induction zone length, e.g., 70% argon dilution for a stoichiometric hydrogen-oxygen predetonator mixture.  相似文献   

6.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

7.
We provide the first theoretical demonstration of the existence of quasi-one-dimensional, quasi-steady, self-sustaining convergent detonation waves. These occur in systems where, in the planar wave, the rate of heat release by chemical reaction reaches a maximum at a point of incomplete reaction. The case examined in the present paper is that for a two-step sequential reaction, with the second stage endothermic. We construct detonation velocity against curvature relationships for converging waves, and compare these theoretical curves with direct numerical simulations of imploding detonations in cylindrical and spherical geometries. We also comment on the one-dimensional stability of imploding and diverging detonation fronts governed by the two-step model.  相似文献   

8.
Experimental images of detonation fronts are made for several fuel-oxidizer mixtures, including hydrocarbon–air systems. Schlieren and planar laser induced fluorescence techniques are used to image both the shock configurations and the OH reaction front structure in a single experiment. The experiments are carried out in a narrow rectangular channel. The degree of instability of detonation fronts in different mixtures is evaluated by comparing calculated mixture parameters with the longitudinal neutral stability curve. The images reveal that the structure of the front increases dramatically in complexity as the mixture parameters move away from the neutral stability curve into the unstable region. Of the mixtures studied, nitrogen-diluted hydrocarbon mixtures are predicted to be the most unstable, and these show the greatest degree of wrinkling in the shock and OH fronts, with distortion occurring over a wide range of spatial scales. In the most unstable cases, separation of the shock and OH front occurs, and localized explosions in these regions are observed in a high-speed schlieren movie. This is in dramatic contrast to the weakly unstable waves that have smooth reaction fronts and quasi-steady reaction zones with no evidence of localized explosions. A key feature of highly unstable waves is very fine scale wrinkling of the OH and shock fronts, which is absent in the low-activation energy cases. This may be due to the superposition of cellular structures with a wide range of cell sizes. In contrast to soot foils, images of the OH front have a more stochastic appearance, and organized cellular structure is not as apparent.  相似文献   

9.
This paper discusses the Nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation waves and the Ignition and Growth reactive flow model of shock initiation and detonation wave propagation in solid explosives. The NEZND theory identified the nonequilibrium excitation processes that precede and follow the exothermic decomposition of a large high explosive molecule into several small reaction product molecules. The thermal energy deposited by the leading shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reactions can occur. The induction time for the onset of the initial endothermic reactions can be calculated using high pressure-high temperature transition state theory. Since the chemical energy is released well behind the leading shock front of a detonation wave, a physical mechanism is required for this chemical energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. For practical predictions of shock initiation and detonation in hydrodynamic codes, phenomenological reactive flow models have been developed. The Ignition and Growth reactive flow model of shock initiation and detonation in solid explosives has been very successful in describing the overall flow measured by embedded gauges and laser interferometry. This reactive flow model uses pressure and compression dependent reaction rates, because time-resolved experimental temperature data is not yet available. Since all chemical reaction rates are ultimately controlled by temperature, the next generation of reactive flow models will use temperature dependent reaction rates. Progress on a statistical hot spot ignition and growth reactive flow model with multistep Arrhenius chemical reaction pathways is discussed. The text was submitted by the authors in English.  相似文献   

10.
The structure of detonation waves propagating through the annular channel of an optically accessible non-premixed rotating detonation engine (RDE) are investigated using mid-infrared imaging. The RDE is operated on hydrogen–air mixtures for a range of air mass flow rates and equivalence ratios. Instantaneous images of the radiation intensity from water vapor are acquired using a mid-infrared camera and a band-pass filter (2.890?±?0.033?µm). The instantaneous mid-infrared images reveal the stochastic nature of the detonation wave structure, position and angle of oblique and reflected shock waves, presence of shear layer separating products from the previous and current cycles, and extent of mixing between the reactants and products in the reactant fill zone in front of the detonation wave. The images show negligible signal directly in front of the detonation waves suggesting that there is minimal mixing between the reactants and products from the previous cycle ahead of the detonation wave for most operating conditions. The mid-infrared images provide insights useful for improving fundamental understanding of the detonation structure in RDEs and benchmark data for evaluating modeling and simulation results of RDEs.  相似文献   

11.
12.
A numerical simulation of the interaction of detonation waves with an obstacle having orifices and an analysis of the results were performed. The calculations were conducted using the 3D GasDynamicTool code for a model gas with parameters of detonation corresponding to a hydrogen-air stoichiometric mixture under normal conditions. Within the framework of the assumptions made, it was shown that, upon interaction with a perforated partition, a detonation wave experiences disintegration accompanied by the formation of unsteady jets of detonation products, with each one being preceded by a shock wave. The simulations demonstrated that the reinitiation of detonation downstream from the partition is determined by the dynamics of the ignition caused by the interaction between the converging shock waves formed ahead of the jets outflowing from neighboring orifices.  相似文献   

13.

We examine detonation waves with a four-step chain-branching reaction model that exhibits explosion limits close to the two lower limits of hydrogen–oxygen chemistry. The reaction model consists of a chain-initiation step and a chain-branching step, both temperature-dependent with Arrhenius kinetics, followed by two pressure-dependent termination steps. Increasing the chain-branching activation energy or the overdrive shortens the reaction length in the ZND wavelength and leads to more unstable detonations, according to multi-dimensional linear stability analysis. Corresponding numerical simulations show that detonations with weak chain-branching reactions have a wave structure similar to those with a single-step reaction; strong chain-branching detonations show distinct keystone features. Keystone regions are bounded by a discontinuity in reactivity across the shear layers emanating from the triple points at the intersection of the transverse waves and the main front. Especially in the strong case, chain-branching occurs within a thin front at the back side of the keystone figure, or immediately behind Mach stems.  相似文献   

14.
We show that the weak detonation waves for a combustion model of Rosales–Majda are nonlinearly stable. Because of the strongly nonlinear nature of the wave, usual stability analysis of weakly nonlinear nature does not apply. The chemical switch on-off is the main feature of nonlinearity. In particular, the propagation of the wave depends sensitively on the tail behaviour of the flow in front of it. Unlike the strong detonation waves, a weak detonation is supersonic and there is the separation of the gas waves from the reacting front. As a consequence, the reacting front needs to be traced. Received: 6 October 1998 / Accepted: 2 February 1999  相似文献   

15.
孙承纬 《计算物理》1986,3(2):142-154
本文叙述一维程序SSS的理论和结构。介质采用流体弹塑性模型。爆轰反应有四种可选方式:Arrhenius律、C-J比容法、方波法和Forest Fire方程。爆轰产物可选用HOM或JWL状态方程。SSS程序的特殊功能有,激光效应、爆轰增长、强爆炸波、散心爆轰和瞬时爆轰等,初始起爆或能量释放位置可任意设定。本程序部分参考了美国洛斯阿拉莫斯实验室的一维程序SIN。本文列举的算例把这两个程序作了比较。  相似文献   

16.
Flame acceleration and transition to detonation in submillimetre two-dimensional planar and three-dimensional square channels were simulated by solving the compressible reactive Navier–Stokes equations. A simplified chemical–diffusive model was used to describe the diffusive transport and chemical reaction of a highly reactive mixture, such as stoichiometric ethylene and oxygen in 2D and 3D channels. The walls of the channels were modelled as no-slip and adiabatic. The initial flame acceleration and precursor shock formation were consistent with earlier results. Viscous dissipation in the boundary layer heats the reactants, which have been compressed by the precursor shock. The strength of the precursor shock and the amount of viscous dissipation increase until the temperature of the boundary layer is high enough to ignite the reactants. This produces a spontaneous wave, which, in most of the cases considered, initiates the detonation. The spontaneous wave first forms where the flame attaches to the wall in the planar channels, and forms at the corner where two walls meet in the square channels. In a separate study, the boundary layer also ignited in a computation for a circular tube containing a mixture hydrogen and oxygen represented by a detailed chemical reaction mechanism. The formation of spontaneous waves to the extent studied appears to be robust, and is relatively insensitive to channel geometry, fuel and oxidiser mixture, and the level of detail in the chemical–diffusive models used.  相似文献   

17.
18.
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each “particle” (wave packet) contribution.  相似文献   

19.
This paper discusses the mathematical formulation of Detonation Shock Dynamics (DSD) regarding a detonation shock wave passing over a series of inert spherical particles embedded in a high-explosive material. DSD provides an efficient method for studying detonation front propagation in such materials without the necessity of simulating the combustion equations for the entire system. We derive a series of partial differential equations in a cylindrical coordinate system and a moving shock-attached coordinate system which describes the propagation of detonation about a single particle, where the detonation obeys a linear shock normal velocity-curvature (Dn–κ) DSD relation. We solve these equations numerically and observe the short-term and long-term behaviour of the detonation shock wave as it passes over the particles. We discuss the shape of the perturbed shock wave and demonstrate the periodic and convergent behaviour obtained when detonation passes over a regular, periodic array of inert spherical particles.  相似文献   

20.
Experimental evidence of controlled detonation initiation and propagation in a hypersonic flow of premixed hydrogen-air is presented. This controlled detonation initiation is created in a hypersonic facility capable of producing a Mach 5 flow of hydrogen-air. Flow diagnostics such as high-speed schlieren and OH* chemiluminescence results show that a flame deflagration-to-detonation transition occurs as a combined result of turbulent flame acceleration and shock-focusing. The experimental results define three new distinct regimes in a Mach 5 premixed flow: deflagration-to-detonation transition (DDT), unsteady compressible turbulent flames, and shock-induced combustion. A two-dimensional implicit-LES (ILES) simulation, which solves the compressible, reactive Navier-Stokes equations on an adapting grid is conducted to provide additional insight into the local physical mechanism of detonation transition and propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号