首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The diffusion coefficient of the micelle, the first CMC and the second CMC of Triton X-100 are determined by cyclic voltammetry without any probe. The first CMC and the second CMC of Triton X-100 are 3.1x lO?1 and 1.3× 10?1 respectively. The viscosity of the micelle solution, the micellar aggregation number and the micellar size increase but the diffusion coefficient decreases with Triton X-100 concentration increasing. The mechanism of the electrochemical reaction of Triton X-100 at platinum electrode is deduced by measurements of conductivity, pH and cyclic voltammetry.  相似文献   

2.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

3.
In this investigation, the micellization and the clouding phenomena of a nonionic surfactant, poly(ethylene glycol) t-octylphenyl ether (Triton X-100) in the absence and presence of halide ions (sodium salt) electrolytes has been reported. The critical micelle concentration (CMC) of Triton X-100 (in the absence and presence of electrolytes) was measured by surface tension measurements. A decreasing trend of CMC was found with increasing the temperature as well as the concentration of electrolyte. The effectiveness of the halide ions was found in the order: F? > Cl? > Br? > I?. The surface properties of Triton X-100 were evaluated. The thermodynamic parameters of the micellar systems of Triton X-100 were evaluated and from these thermodynamics data, it was found that in the presence of electrolyte the stability of the micellar system is more. The cloud points (CPs) of Triton X-100 were also measured in the absence and presence of halide ions of electrolytes. With the addition of halide ions of sodium salt (electrolyte), a decrease in CP values was observed and the order was found to be: F? > Cl? > Br? > I?.  相似文献   

4.
The fluorescence intensity, lifetime and degree of polarization of octadecylrhodamine B (ORB) have been measured in order to examine the usefulness of this molecule as a probe of micelle properties for low-molecular-weight detergents and water-soluble triblock copolymers. The surfactants examined are hexadecyltrimethylammonium chloride (HTAC), Triton X-100 (TX-100), sodium dode-cylsulfate (SDS), sodium tetradecylsulfate (STS), and Pluronic L64 (ethylene oxide [EO]13 propylene oxide30 EO13, L64). The fluorescence intensity and degree of polarization of ORB show drastic increases at the critical micelle concentrations (CMC) of HTAC, TX-100 and L64, indicating that ORB is cooperatively incorporated into the micelles upon micellization. This feature demonstrates the validity of ORB as a probe for detecting micelle formation of these surfactants. However, in the case of SDS and STS, the fluorescence intensity starts to rise at concentrations far below the CMC, and the degree of polarization does not show significant changes at the CMC. The details of the interactions between ORB and the anionic surfactants have been unclear. These facts imply that some caution is needed for the applications of ORB to the systems containing anionic surfactants. The local viscosity of L64 micelles has been determined by polarization and lifetime measurements. The structure of the block copolymer micelles and the locations of the probe in the micelles are discussed in terms of the viscosity data.  相似文献   

5.
Herein, we report the micellization and the clouding of a nonionic surfactant, poly(ethylene glycol) t-octylphenyl ether (Triton X-100), in aqueous solutions in the absence and presence of (chloride salt) electrolytes. In the absence and presence of electrolytes, the critical micelle concentration (CMC) of Triton X-100 was measured by surface tension measurements. Upon increasing the temperature as well as the concentration of electrolytes, the CMCs decreased. The surface properties and the thermodynamic parameters of the micellar systems were evaluated. From these evaluated thermodynamic parameters, it was found that in the presence of an electrolyte, the stability of the micellar system is high. The cloud points (CPs) of Triton X-100 were also measured in the absence and presence of metallic ions of electrolytes. Upon the addition of metallic ions of chloride salts (electrolytes), the decrease in CP values was observed and the order was found to be: K+ > Na+ > Li+ > NH+4.  相似文献   

6.
The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) readily dissolves high concentrations of cellulose. However, the high viscosity of [emim][OAc] (162 cP at 20 °C) could limit its use as a solvent for cellulose. Dissolved CO2 has been shown to decrease the viscosity of ILs. In this study, a 50 psi CO2 environment was applied for the dissolution of cellulose in [emim][OAc] to determine if the cellulose dissolution could be enhanced. Dissolution profiles of 4 wt% cellulose dissolved in [emim][OAc] were obtained over a 24 h period. A 75% increase in the amount of dissolved cellulose was observed with the application of a 50 psi CO2 environment.  相似文献   

7.
This study investigates the effects of various cationic surfactants on the cloud point (CP) of the nonionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The values of CPs for Triton X-100 can be measured directly because TX-100 has an average number of oxyethylene units per molecule of p  9.5 and a CP = 66.0 °C. Quaternary ammonium dimeric surfactants (m-s-m, m = 10, 12, and 16, and s = 2, 6, and 10) were synthesized and used. The melting temperature TM and the Krafft temperature TK were measured for 1 wt% aqueous solutions of these synthesized surfactants. The melting temperature of the solid gemini surfactants increased with the carbon number of the alkyl chain. The results showed that additions of the gemini surfactants (which are infinitely miscible with water) to Triton X-100 increased the cloud point of the TX-100 solutions. All salts tested in these studies had a large effect on the CPs of nonionic surfactants due to their effect on water structure and their hydrophilicity. The effect of the alkyl chain length of the gemini surfactant on the CP of Triton X-100 is therefore more important than the spacer chain length.  相似文献   

8.
The adsorption of carboxymethylcellulose (CMC) in the presence of the surfactants: anionic SDS, nonionic polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100) and their mixtures SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with different molar ratios (1:1; 1:3 and 3:1) from the electrolyte solutions (NaCl, CaCl2) on the manganese dioxide surface (MnO2) was studied. In every measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether and the largest when the mixtures of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether were used. Among the measured mixtures, the mixture of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with the molar ratio 1:3 caused the largest increase of CMC adsorption amount. These results are a consequence of formation of complexes between the carboxymethylcellulose macromolecules and the surfactant molecules. In order to determine the electrokinetic properties of the system the surface charge density of MnO2 and the zeta potential measurements were conducted in the presence of the CMC macromolecules and the surfactants. The obtained data showed that the adsorption of CMC or CMC/surfactants complexes on the manganese dioxide surface strongly influences the structure of the electric double layer MnO2/electrolyte solution.  相似文献   

9.
Regularities of solubilization of calix[4]resorcinarenes (H8L) with the variable length of hydrophobic radicals (R = CH3, C3H7, C5H11, C7H15, C8H17, C9H19, C11H23) by the micelles of nonionic surfactants Triton X-100 and Triton X-405 in aqueous solutions were studied using solubility measurements. It was found that the solubilization capacity of surfactant micelles with respect to H8L and [H4L]4– depends on the extension (thickness) of their polar layers. It was shown by means of potentiometric titration that, in solutions of nonionic surfactants, the constants of the interaction between tetraanions [H4L]4– and tetrametylammonium ions depend on the structure and concentration of nonionic surfactants and the hydrophobicity of H8L molecules. A change in the affinity of the [H4L]4– anions for protons and tetramethylammonium cations in nonionic surfactant solutions was revealed in relation to the length of substituents R and reagent concentrations.  相似文献   

10.
The adsorption isotherms of Triton X-100 for air/water–orthophosphoric acid interfaces were determined by the stripping method. The surface chemical parameters, Γmax, F and ΔG°A, and the aggregation ones, CMC and the ΔGM, are determined in different H2O/H3PO4 mixtures. For concentrations higher than 4 M, the values of the CMC, ΔGM, Γmax and ΔG°A increase with increasing acid concentrations due to the occurring changes in the medium structure. ©2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASsurface tension / non-ionic surfactant / micellization / orthophosphoric acid  相似文献   

11.
The effects of sodium barbital (SB) on the solubility of different kinds of surfactants viz., CTAB (cationic head group), SDS (anionic head group) and Triton X‐100 (non ionic head group) in solution phase as well as their first and second critical micelle concentrations (CMC1 and CMC2), the change in Kraft temperatures (TK) and cloud points (CP) have been studied. Furthermore, the article reports SB‐surfactant interaction study, which is application oriented and highlights the underlying physico‐chemical aspects of the system through florescence and conductivity measurements. The results show that the solubility of CTAB and Triton X‐100 increases with the addition of SB, and that of SDS increases in the presence of small amounts of SB and decreases in the presence of large amounts of SB. With the increasing SB concentration, the CMC of CTAB and CMC1 of Triton X‐100 both increase, while the CMC of SDS decreases, and the CMC2 of Triton X‐100 has no obvious change. The addition of SB decreases the TK of CTAB sharply, but it increases the TK of SDS and the CP of Triton X‐100. The different effects of SB on the physico‐chemical properties of differently charged surfactants may be related to its different interactions with the surfactants.  相似文献   

12.
A common nonionic surfactant Triton X-100 was dissolved in a commercial ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4). The surface tension of the bmimBF4 solution was decreased with increasing the content of surfactant Triton X-100, a similar phenomenon with aqueous solution systems. Dynamic surface properties of Triton X-100 in bmimBF4 were measured. It was found that pure IL solvents need rearrangement at the air-bmimBF4 interface during the beginning stage of absorption. Moreover, the adsorption model was found to be in accord with the diffusion-controlled adsorption mechanism, and further, the dilute bmimBF4 solutions are close to the diffusion-controlled adsorption.  相似文献   

13.
The effect of addition of 3-methyl-1-pentylimidazolium tetrafluoroborate ([C5mim][BF4]) on the micellization of a nonionic surfactant, Triton X-100 (TX-100), has been investigated. The techniques employed to study the aggregation behavior are fluoremetry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) and the concentration range covered is 0–2?wt% [C5mim][BF4]. The probes, viz. pyrene and pyrene-1-carboxaldehyde (PyCHO), have been used for fluorescence analysis. According to the findings, the addition of pentyl-chained ionic liquid (IL) to aqueous TX-100 results in a dramatic increase in critical micelle concentration (cmc) decrease in micellar size, and aggregation number pointing toward an overall “unfavorable” aggregation process.  相似文献   

14.
Abstract

The diffusion coefficients of Triton X-100 micelles with different shape are determined by cyclic voltammetry without any probe. The first CMC (3.2 × 10?4 mol-Lminus;1) and the second CMC (1.3 × 10minus;3 mol-Lminus;1) of Triton X-100 micelles arc obtained, and the mechanism of electrochemical reaction for Triton X-100 is deduced, When n-hexanol is added, the diffusion coefficient of Triton X-100 micelles with different shape increases, but the solubilization fraction of n-hexanol decreases in spherical micelles and is almost constant in rodlike ones. However, the micropolarity of micelles decreases in both spherical and rodlike micelles. Furthermore, the diffusion coefficient of Triton X-100 micelles with different shape increases with temperature and the diffusion activation energy increases with n-hexanol content.  相似文献   

15.
Polymer–surfactant interactions in aqueous solutions of a acrylamide-based, hydrophobically modified polysulfobetaine (ADS) containing 3-[N-(2-methacryloxylethyl)-N,N-dimethylammonio]-propane sulfonate and stearyl methylacrylate, with sodium dodedyl sulfate (SDS), N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), and Triton X-100 were studied using surface tension, rheology, Rayleigh light scattering, and dynamic laser light scattering techniques. The purpose of this study was to highlight the influences of the surfactant structure and the nature of the surfactant head group on the polymer–surfactant interactions. The results show that the interaction and association between ADS and surfactants are distinctly varied depending on surfactant type and surfactant concentration. SDS produced the strongest interactions with ADS, while DTAB and Triton X-100 interact with ADS to a lesser degree, which is attributed to surfactant structure and the nature of the surfactant head group. For SDS and DTAB, there are two driving forces for the complexation of the polymer and surfactants, resulting from the electrostatic interaction and the hydrophobic association. However, for the nonionic surfactant Triton X-100, only hydrophobic association predominated in the interaction between ADS and the surfactant. The mechanism and reconstruction of the polymer–surfactant complexes have been evaluated and discussed.  相似文献   

16.
The effects of a substrate additive, H+ and solvents (water and acetone), on the micelle-catalyzed aquation of tris-(4,7-diphenyl-1, 10-phenanthroline)iron(II), Fe(Ph2Phen)3 2+, have been investigated using#Triton X-100 micelles. The k0 vs. [TX-100] profiles at fixed [H2O] are structured, exhibiting maxima. Catalytic factors of 46.6–171.7 are observed for 5.56×10−2≤[H2O] 55.60×10−2 mol dm−3. On the other hand, at fixed [H+], the k0 vs. [TX-100] exhibit broad maxima. The aquation reaction is inhibited by H+ and catalytic factors decrease rapidly and exponentially from 422.5 to 20.9 for 0.20×10−3≤[H+]≤2.00×10−3 mol dm−3. The aquation is found to be faster (ca. 160–1200 fold) in acetone than in the aqueous medium depending on the added [H2O]. These observations are rationalized on the basis of a proposed modified lamellar structure for the Triton X-100 (TX-100) micelles in which direct substitution of water molecules into the coordination sphere of the complex occurs.  相似文献   

17.
Micellisation of sodium dodecyl sulphate (SDS) was studied in the presence of hydrochloric acid (HCl) and perchloric acid (HClO4) using conductometry method. The conductivity-[SDS] plots showed abnormal profile pattern at [HCl] > 0.002 mol dm?3 and [HClO4] > 0.001 mol dm?3. Below these acid concentrations, conductivity pattern was normal, and the critical micelle concentration (CMC) values of SDS were lower in both acids than in water. At high acid concentrations, post-micellar slopes were negative. Fourier transform infrared (FTIR) analysis showed significant shifts in the bands suggesting the formation of dodecyl hydrogen sulphate by SDS at high acid concentrations. Thermodynamic parameters for SDS micellisation at low acid concentrations ([HCl] = 0.002 mol dm?3 and [HClO4] = 0.001 mol dm?3) were determined in the temperature range 15–40°C. As temperature increases, the change in enthalpy and entropy of micellisation becomes less positive, and the change in free energy of micellisation becomes increasingly negative.  相似文献   

18.
Ionic liquids are attracting great attention nowadays due to their interesting properties which make them useful in a broad range of applications including reaction media or separation/capture of environmentally hazardous gases such as carbon dioxide. In many cases, for practical and/or economical reasons, the use of aqueous solutions of ILs would be preferable to their use as pure compounds.In this work, high pressure equilibrium data for the {carbon dioxide (CO2) + tri-iso-butyl(methyl)phosphonium tosylate [iBu3MeP][TOS] + water system were measured at temperatures ranging from (276 to 370) K and pressures up to 100 MPa. Measurements were performed using a high-pressure cell with a sapphire window that allows direct observation of the liquid–vapour transition. Mixtures with different IL concentrations were studied in order to check the influence of the amount of IL on the solubility of CO2 in the aqueous mixture.The results show that the presence of IL enhances the solubility of CO2 in the (IL + water) system revealing a salting-in effect of the IL on the solubility of CO2. The appearance of a three phase region was observed for IL concentrations higher than 4 mol% of IL in water when working at pressures between 4 and 8 MPa and temperatures between (280 and 305) K. In this range, the upper limit of the VLE region observed is shown to increase with the temperature being almost independent of the IL initial concentration in the mixture.  相似文献   

19.
The effects of addition of cationic cetyltrimethylammonium bromide (CTAB), non-ionic (Triton X-100) and anionic sodium dodecyl sulfate (SDS) surfactants in organic phase for preparing the composite nanofiltration membranes were investigated. The interfacial polymerization technique was employed by applying trimesoyl chloride (TMC) and piperazine (PIP) as the reagents for the preparation of poly(piperazineamide) on a UF support. The obtained thin layer membranes were placed in oven for 2 min at 70 °C. Water permeation performance, salt rejection, membrane surface charge, chemical structure and membrane morphology including top surface and cross-section were investigated for characterization of the prepared membranes using IR-ATR, SEM, filtration and zeta potential measurement. The prepared membranes using SDS showed higher flux compared to the other membranes. SEM surface images demonstrate some defects and cracks on the thin layer surface of the membrane prepared with SDS. For membrane containing CTAB, the salt rejection increased in the order of Na2SO4 > NaCl > MgCl2 with variation around 50–90%.  相似文献   

20.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号