首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In microgravity combustion, where buoyancy is not present to accelerate the flow field and strain the flame, radiative extinction is of fundamental importance, and has implications for spacecraft fire safety. In this work, the critical point for radiative extinction is identified for normal and inverse ethylene spherical diffusion flames via atmospheric pressure experiments conducted aboard the International Space Station, as well as with a transient numerical model. The fuel is ethylene with nitrogen diluent, and the oxidizer is an oxygen/nitrogen mixture. The burner is a porous stainless-steel sphere. All experiments are conducted at constant reactant flow rate. For normal flames, the ambient oxygen mole fraction was varied from 0.2 to 0.38, burner supply fuel mole fraction from 0.13 to 1, total mass flow rate, total, from 0.6 to 12.2 mg/s, and adiabatic flame temperature, Tad, from 2000 to 2800 K. For inverse flames, the ambient fuel mole fraction was varied from 0.08 to 0.12, burner supply oxygen mole fraction from 0.4 to 0.85, total from 2.3 to 11.3 mg/s, and Tad from 2080 to 2590 K. Despite this broad range of conditions, all flames extinguish at a critical extinction temperature of 1130 K, and a fuel-based mass flux of 0.2 g/m2-s for normal flames, and an oxygen-based mass flux of 0.68 g/m2-s for inverse flames. With this information, a simple equation is developed to estimate the flame size (i.e., location of peak temperature) at extinction for any atmospheric-pressure ethylene spherical diffusion flame given only the reactant mass flow rate. Flame growth, which ultimately leads to radiative extinction if the critical extinction point is reached, is attributed to the natural development of the diffusion-limited system as it approaches steady state and the reduction in the transport properties as the flame temperature drops due to increasing flame radiation with time (radiation-induced growth.)  相似文献   

2.
The present study experimentally investigates the structure and instabilities associated with extremely low-stretch (1 s−1) gaseous diffusion flames. Ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. OH-PLIF and IR imaging techniques are used to characterize the reaction zone and the burner surface temperature, respectively. A flame stability diagram mapping the response of the ultra-low-stretch diffusion flame to varying fuel injection rate and nitrogen dilution is explored. In this diagram, two main boundaries are identified. These boundaries separate the stability diagram into three regions: sooting flame, non-sooting flame, and extinction. Two distinct extinction mechanisms are noted. For low fuel injection rates, flame extinction is caused by heat loss to the burner surface. For relatively high injection rates, at which the heat loss to burner surface is negligible, flame radiative heat loss is the dominant extinction mechanism. There also exists a critical inert dilution level beyond which the flame cannot be sustained. The existence of multi-dimensional flame phenomena near the extinction limits is also identified. Various multi-dimensional flame patterns are observed, and their evolutions are studied using direct chemiluminescence and OH-PLIF imaging. The results demonstrate the usefulness of the present burner configuration for the study of low-stretch gaseous diffusion flames.  相似文献   

3.
This study integrates new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through a flat porous burner into an oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation as well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well as “open-tip” and “closed-tip” flames.  相似文献   

4.
1引言在火焰中,辐射过程是一种重要的传热方式。对该过程尽可能精确的计算,对于改进燃烧设备的设计、改善设备的运行性能十分有益。在正常重力环境下,与其它的释热现象相比,预混火焰中的辐射热损失十分微弱,因而,过去对预混火焰的分析中,往往忽略了辐射热损失的影响。近年来,对微重力(ug)环境下的预混火焰的研究结果表明,可燃极限与#s最小点火能无关,自媳灭火焰(SEFs)发生时;其释放的能量比通常观察到的点火极限时的能量大几个数量级山,因此火焰伸张并不能解释“g环境下观察到的实验结果,辐射热损失可能是影响#g火焰可…  相似文献   

5.
The present work analyzes cylindrical diffusion flames (Tsuji burner) under low stretch condition, considering fuel injection also from the backward region of the burner. To highlight the fundamental aspects of this flame, some assumptions are imposed, like constant thermodynamic and transport coefficients, unitary Lewis number and no radiative heat loss. It is also considered potential flow model and incompressible Navier–Stokes model. Despite the simplicity of the former model, results from both models show good agreement. Also, an asymptotic analysis describing the problem far from the burner is able to capture the most important mechanisms controlling the flame, then the flame shape is determined and the dependence of the characteristic length scales on Peclet number (based on the burner properties), free stream velocity and stoichiometry is revealed. The results show that the flame width is proportional to the mass stoichiometric coefficient and reciprocal to the Peclet number the 1/4 power and free stream velocity the 3/4 power, and that the flame height is proportional to the square of the mass stoichiometric coefficient and to the square root of the ratio of Peclet number to free stream velocity. In addition, an asymptotic stability analysis reveals low-stretch flame extinction to be caused by reduction in fuel and oxidizer concentrations, which provides the range of the stoichiometric coefficient for stable regime, and at the same time the range of heat released.  相似文献   

6.
While premixed and nonpremixed microgravity flames have been extensively investigated, the corresponding literature regarding partially premixed flames (PPFs) is sparse. We report the first experimental investigation of burner-stabilized microgravity PPFs. Partially premixed flames with multiple reaction zones are established in microgravity on a Wolfhard–Parker slot burner in the 2.2 s drop tower at the NASA Glenn Research Center. Microgravity measurements include flame imaging, and thermocouple and radiometer data. Detailed simulations are also used to provide further insight into the steady and transient response of these flames to variations in g. The flame topology and interactions between the various reaction zones are strongly influenced by gravity. The flames widen substantially in microgravity. During the transition from normal to microgravity, the flame structure experiences a fast change and another relatively slower transient change. The fast response is due to the altered advection as the value of g is reduced, while the slow response is due to the changes in the diffusive fluxes. The radiative heat loss from the flames increases in microgravity. A scaling analysis based on a radiation Damköhler number is able to characterize the radiation heat loss.  相似文献   

7.
In highly fluctuating flows, it happens that high values of the strain-rate do not induce extinction of the flame front. Unsteady effects minimize the flame response to rapidly varying strain fields. In the present study, the effects of time-dependent flows on non-premixed flames are investigated during flame/vortex interactions. Gaseous flames and spray flames in the external sheath combustion regime are considered. To analyse the flame/vortex interaction process, the velocity field and the flame geometry are simultaneously determined using particle imaging velocimetry and laser-induced fluorescence of the CH radical. The influence of vortex flows on the extinction limits for different vortex parameters and for different gaseous and two-phase flames is examined. If the external perturbation is applied over an extended period of time, the extinction strain-rate is that corresponding to the steady-state flame, and this critical value mainly depends on the fuel and oxidizer compositions and the injection temperature. If the external perturbation is applied during a short period of time, extinction occurs at strain-rates above the steady-state extinction strain-rate. This deviation appears for flow fluctuation timescales below steady flame diffusion timescales. This behaviour is induced by diffusive processes, limiting the ability of the flame to respond to highly fluctuating flows. With respect to unsteady effects, the spray flames investigated in this article behave essentially like gaseous flames, because evaporation takes place in a thin layer before the flame front. Extinction limits are only slightly modified by the spray, controlling process being the competition between aerodynamic and diffusive timescales.  相似文献   

8.

Nitrogen-diluted hydrogen burning in air is modeled numerically using a constant density and one-step reaction model in a plane two-dimensional counterflow configuration. An optically thin assumption is used to investigate the effects of radiation on the dynamics, structure, and extinction of diffusion flames. While there exist dual steady-state extinction limits for the 1D radiative flame response, it is found that as the 1D radiative extinction point is approached the 1D low-stretch diffusion flame exhibits oscillatory response, even with sub-unity Lewis number fuel. These radiation-induced limit cycle oscillations are found to have increasing amplitude and decreasing frequency as the stretch rate is reduced. Flame oscillation eventually leads to permanent extinction at the stretch rate which is larger than the steady-state radiative extinction value. Along the 1D radiative response curve, the transition from 1D flame to 2D structure and the differences in the resulting 2D flame patterns are also examined using a variety of initial profiles, with special emphasis on the comparison of using the initial profiles with and without a flame edge. Similar to the previous studies on the high-stretch adiabatic edge flames using the same configuration, the high-stretch radiative flames are found to resist 1D blow-off quenching through various 2D structures, including propagating front and steady cellular flames for initial profiles with and without flame edges. For all initial profiles studied, the low-stretch radiative flames are also found to exhibit different 2D flame phenomena near the 1D radiative extinction limit, such as transient cellular structures, steady cellular structures, and pulsating ignition fronts. Although the results demonstrate the presence of low-stretch and high-stretch 2D bifurcation branches close to the corresponding 1D extinction limits irrespective of the initial profile used, particular 2D flame structures in certain stretch rate range are initial profile dependent. The existence of two-dimensional flame structures beyond the 1D steady-state radiative extinction limit suggests that the flammable range is expanded as compared to that predicted by the 1D model. Hence, multi-dimensional flame patterns need to be accounted for when determining the flammability limits for a given system.  相似文献   

9.
An improved understanding of cool diffusion flames could lead to improved engines. These flames are investigated here using a spherical porous burner with gaseous fuels in the microgravity environment of the International Space Station. Normal and inverse flames burning ethane, propane, and n-butane were explored with various fuel and oxygen concentrations, pressures, and flow rates. The diagnostics included an intensified video camera, radiometers, and thermocouples. Spherical cool diffusion flames burning gases were observed for the first time. However, these cool flames were not readily produced and were only obtained for normal n-butane flames at 2 bar with an ambient oxygen mole fraction of 0.39. The hot flames that spawned the cool flames were 2.6 times as large. An analytical model is presented that combines previous models for steady droplet burning and the partial-burning regime for cool diffusion flames. The results identify the importance of burner temperature on the behavior of these cool flames. They also indicate that the observed cool flames reside in rich regions near a mixture fraction of 0.53.  相似文献   

10.
The importance of radiation heat loss in laminar and turbulent diffusion flames at normal gravity has been relatively well recognized in recent years. There is currently lack of quantitative understanding on the importance of radiation heat loss in relatively small scale laminar diffusion flames at microgravity. The effects of radiation heat transfer and radiation absorption on the structure and soot formation characteristics of a coflow laminar ethylene/air diffusion flame at normal- and microgravity were numerically investigated. Numerical calculations were conducted using GRI-Mech 3.0 combustion chemistry without the NOx mechanism and complex thermal and transport properties, an acetylene based soot formation model, and a statistical narrow-band correlated-k non-grey gas radiation model. Radiation heat transfer and radiation absorption in the microgravity flame were found to be much more important than their counterparts at normal gravity. It is important to calculate thermal radiation transfer accurately in diffusion flame modelling under microgravity conditions.  相似文献   

11.
Hydrogen–air diffusion flames were modeled with an emphasis on kinetic extinction. The flames were one-dimensional spherical laminar diffusion flames supported by adiabatic porous burners of various diameters. Behavior of normal (H2 flowing into quiescent air) and inverse (air flowing into quiescent H2) configurations were considered using detailed H2/O2 chemistry and transport properties with updated light component diffusivities. For the same heat release rate, inverse flames were found to be smaller and 290 K hotter than normal flames. The weakest normal flame that could be achieved before quenching has an overall heat release rate of 0.25 W, compared to 1.4 W for the weakest inverse flame. There is extensive leakage of the ambient reactant for both normal and inverse flames near extinction, which results in a premixed flame regime for diffusion flames except for the smallest burners with radii on the order of 1 μm. At high flow rates H + OH(+M)  H2O(+M) contributes nearly 50% of the net heat release. However at flow rates approaching quenching limits, H + O2(+M)  HO2(+M) is the elementary reaction with the largest heat release rate.  相似文献   

12.
The stability mechanism of laminar coflow jet diffusion flames in normal gravity has been studied computationally and experimentally. N-butane, the heaviest alkane in a gaseous state at ambient temperature and pressure, is used as the fuel since the reaction mechanism is similar to that of higher (liquid) hydrocarbons. The critical mean n-butane jet and coflowing air velocities at flame stability limits are measured using a small fuel tube burner (0.8 mm inner diameter). The time-dependent, axisymmetric numerical code with a detailed reaction mechanism (58 species and 540 reactions), molecular diffusive transport, and a radiation model, reveals a flame structure. A fuel-lean peak reactivity spot (i.e., reaction kernel), possessing the hybrid nature of diffusion-premixed flame structure at a constant temperature of ≈1560 K, is formed at the flame base and controls the flame stability. In a near-quiescent environment, the flame base resides below the fuel tube exit plane and thereby premixing is limited. As the coflowing air velocity is increased incrementally under a fixed fuel jet velocity, the flame base moves slightly above (≈1 mm) the burner exit and vigorous premixed combustion becomes prevailing. The local heat-release rate at the reaction kernel nearly doubles due to the increased convective oxygen flux (i.e., a blowing effect). The local Damköhler number, newly defined as a ratio of the square root of the local heat-release rate and the local velocity, decreases gradually first and drops abruptly at a critical threshold value and the flame base lifts off from the burner rim. The calculated coflow air velocity at liftoff is ≈0.38 m/s at the fuel jet velocity of 2 m/s, which is consistent with an extrapolated measured value of 0.41 m/s. This work has determined the critical Damköhler number at the stability limit quantitatively, for the first time, for laminar jet diffusion flames.  相似文献   

13.
We demonstrate experimentally, perhaps for the first time, the existence of low-temperature multistage diffusion flames of n-alkanes. Multistage diffusion flames of n-heptane, n-decane, and n-dodecane are established in an atmospheric counterflow burner. Planar laser-induced fluorescence, chemiluminescence, and thermometry are used to probe the structures of such flames. In the first flame zone, the majority of the fuel is partially oxidized via low-temperature peroxy chemistry. In the second flame zone, the intermediate species produced are further oxidized via intermediate-temperature chemistry. The two stages of the flame are coupled such that significant fuel and oxidizer leakage occur, respectively, from the first and second reaction zones. The fuel is then further consumed, in the second stage, after the radical pool is replenished by the oxidation of the intermediates. The structure of the n-alkane multistage flame is found to be consistent with that previously observed for acyclic ethers. Owing to the different classes of temperature-dependent chemistries dominating the first and second stages, the reaction zone structure of multistage diffusion flames is dramatically influenced by the reactant concentrations and flame temperatures. The first stage is relatively favored at lower temperatures whereas the second stage is favored at elevated temperatures. Moreover, near extinction where the flame temperature is low, the multistage flame dynamics are controlled by the first oxidation stage, governed by peroxy chemistry, whereas the second oxidation stage, governed by intermediate chemistry, is dominant near high-temperature ignition conditions. Finally, by doping the oxidizer with ozone, we demonstrate the role of ozone doping on the multistage flame structure and the existence of a separate low-temperature ozone-assisted burning mode.  相似文献   

14.
We conducted a numerical study on the fluid dynamic, thermal and chemical structures of laminar methane–air micro flames established under quiescent atmospheric conditions. The micro flame is defined as a flame on the order of one millimetre or less established at the exit of a vertically-aligned straight tube. The numerical model consists of convective–diffusive heat and mass transport with a one-step, irreversible, exothermic reaction with selected kinetics constants validated for near-extinction analyses. Calculations conducted under the burner rim temperature 300 K and the adiabatic burner wall showed that there is the minimum burner diameter for the micro flame to exist. The Damköhler number (the ratio of the diffusive transport time to the chemical time) was used to explain why a flame with a height of less than a few hundred microns is not able to exist under the adiabatic burner wall condition. We also conducted scaling analysis to explain the difference in extinction characteristics caused by different burner wall conditions. This study also discussed the difference in governing mechanisms between micro flames and microgravity flames, both of which exhibit similar spherical flame shape.  相似文献   

15.
Athree-dimensional model of a steady concurrent flame spread over a thin solid in a low-speed flowtunnel in microgravity has been formulated and numerically solved. The gas-phase combustion model includes the full Navier-Stokes equations for the conservation of mass, momentum, energy and species. The solid is assumed to be a thermally thin, non-charring cellulosic sheet and the solid model consists of continuity and energy equations whose solution provides boundary conditions for the gas phase. The gas-phase reaction is represented by a one-step, second-order, finite-rate Arrhenius kinetics and the solid pyrolysis is approximated by a one-step, zeroth-order decomposition obeying an Arrhenius law. Gas-phase radiation is neglected but solid radiative loss is included in the model. Selected results are presented showing detailed three-dimensional flame structures and flame spread characteristics.

In a parametric study, varying the tunnel (solid) widths and the flow velocity, two important three-dimensional effects have been investigated, namely wall heat loss and oxygen side diffusion. The lateral heat loss shortens the flame and retards flame spread. On the other hand, oxygen side diffusion enhances the combustion reaction at the base region and pushes the flame base closer to the solid surface. This closer flame base increases the solid burnout rate and enhances the steady flame spread rate. In higher speed flows, three-dimensional effects are dominated by heat loss to the side-walls in the downstream portion of the flame and the flame spread rate increases with fuel width. In low-speed flows, the flames are short and close to the quenching limit. Oxygen side diffusion then becomes a dominant mechanism in the narrow three-dimensional flames. The flame spreads faster as the solid width is made narrower in this regime. Additional parametric studies include the effect of tunnelwall thermal condition and the effect of adding solid fuel sample holders.  相似文献   

16.
A unique burner was constructed to experimentally realize a one-dimensional unstrained planar non-premixed flame, previously considered only in idealized theoretical models. One reactant, the fuel mixture in the current experiments, is supplied through a porous plug at the bottom of the combustion chamber and flows vertically up towards the horizontal flame. The crux of the design is the introduction of the oxidizer from above in such a way that its diffusion against the upward product flow is essentially one-dimensional, i.e., uniform over the burner cross-section. This feature was implemented by introducing the oxidizer into the burner chamber from the top through an array of 625 closely spaced hypodermic needles, and allowing the hot products to escape vertically up through the space between the needles. Due to the injection of oxidizer through discrete tubes, a three-dimensional “injection layer” exists below the exit plane of the oxidizer supply tubes. Experimental evidence suggests that this layer is thin and that oxidizer is supplied to the flame by 1-D counterdiffusion, producing a nearly unstrained flame. To characterize the burner, flame position measurements were conducted for different compositions and flowrates of H2–CO2 and O2–CO2 mixtures. The measured flame locations are compared to an idealized one-dimensional model in which only diffusion of oxidizer against the product flow is considered. The potential of the new burner is demonstrated by a study of cellular structures forming near the extinction limit. Consistent with previous investigations, cellular instabilities are shown to become more prevalent as the initial mixture strength and/or the Damköhler number are decreased. As the extinction limit is approached, the number of cells was observed to decrease progressively.  相似文献   

17.
Flame shape is an important observed characteristic of flames that can be used to scale flame properties such as heat release rates and radiation. Flame shape is affected by fuel type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study is to understand the effect of high oxygen concentrations, inverse burning, and gravity on the predictions of flame shapes. Flame shapes are obtained from recent analytical models and compared with experimental data for a number of inverse and normal ethane flame configurations with varying oxygen concentrations in the oxidiser and under earth gravity and microgravity conditions. The Roper flame shape model was extended to predict the complete flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The Spalding model was extended to inverse diffusion flames. The results show that the extended Roper model results in reasonable predictions for all microgravity and earth gravity flames except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results also show trends towards cooler flames in microgravity that are in line with past experimental observations. Some key characteristics of the predicted flame shapes and parameters needed to describe the flame shape using the extended Roper model are discussed.  相似文献   

18.
Nanoscale aluminum (nAl) powders demonstrate relatively fast counter-flow flame spread rates compared to typical fuels such as Poly(methyl methacrylate) or cellulose at similar conditions. This allows for the dominant forward heat transfer mechanism to be through the solid fuel at higher applied oxidizer velocities, and flame structure characteristics typically observed in microgravity to be realized at 1 g conditions. Because of the porosity of the nAl powder, the gaseous oxidizer can diffuse into the bed and reactions within the solid phase become important. Using an energy balance applied to only the solid phase, an analytical model is developed which predicts the experiments for flame spread over a nAl bed. Moreover, an explanation for fingering phenomenon is established based on the effective Lewis and Damköhler numbers. This allows for an explanation of why flame spread over a bed of nAl will demonstrate this fingering instability in a quiescent, 1 g environment without a top plate to hinder buoyant flows.  相似文献   

19.
The Eulerian Stochastic Fields (ESF) Monte Carlo method to solve the transported PDF (TPDF) equation is extended to account for differential diffusion effects by incorporating species individual molecular diffusivities. The method has been applied in Large Eddy simulation (LES) to non-piloted oxy-fuel jet flames at different Reynolds numbers experimentally investigated by Sevault et al. [1]. Due to the high H2 content in the fuel stream and CO2 in the oxidizer these flames pose new challenges to combustion modeling as the flame structures are different compared to CH4/air flames. The simulations show very good agreement with the experiments in terms of mixture fraction conditional mean values for temperature and mayor species on the fuel lean side and the reaction zone, deviations on the fuel rich side are discussed. The trend and location of localized extinction is reproduced well in the simulations, as well as differential diffusion effects in the near field. Additionally, it is shown that a neglect of differential diffusion in the combustion model leads to a lifted flame.  相似文献   

20.
A mathematical model for the laminar diffusion combustion of gases in the absence of forced convection is developed. This combustion mode is realized near an orifice in the partition that separates the fuel and oxidizer. The stationary solution, size and shape of the flame, temperature distribution, and profiles of the concentrations of fuel, oxidizer, and combustion products are determined. It is shown that the limiting diameter of the diffusion flame is inversely proportional to the burning rate of an equivalent premixed mixture of the same fuel and oxidizer, whereas the flame length is proportional to the diameter of the orifice. The unsteady (quasi-stationary) solution to this problem for the case where the gas is confined in a finite-volume vessel is obtained. The time it takes the flame to approach the partition of the vessel with fuel and enter inside is determined. Experiments on studying the diffusion combustion of natural gas in the absence of forced convection near orifices and a slit in the partition separating the gaseous fuel and oxidizer in a finite-volume vessel are performed. The time of combustion is obtained. Depending on the orifice diameter and slit width, three modes of diffusion combustion were identified: combustion above the partition ending in flame extinction, combustion with a breakthrough, and combustion inside the vessel (submerged flame).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号