首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2022,33(7):3527-3530
Two tetravalent uranium silicate and germanate M2UIVT3O9 (M = K, Cs; T = Si, Ge) crystals were crystalized under inert gas by molten salt flux growth method. K2USi3O9 (1) crystallizes in the monoclinic space group P121/n1 with lattice parameters a = 7.1076 Å, b = 10.4776 Å, c = 12.2957 Å, γ = 120° and V = 915.67 Å3. Cs2UGe3O9 (2) crystallizes in a hexagonal space group P-6 with lattice constants of a = 7.5138 Å, b = 7.5138 Å, c = 11.0114 Å, γ = 120° and V = 538.38 Å3. Bond valence calculations indicate tetravalent uranium in both structures, which contain three-membered single-ring T3O96? trimers. K2USi3O9 is the first uranium silicate that contains the Si3O96? trimers.  相似文献   

2.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

3.
《Solid State Sciences》2007,9(2):205-212
SrSi2O2N2 is an important host lattice for Eu2+ doped phosphors. Its crystal structure (space group P1, a = 7.0802(2) Å, b = 7.2306(2) Å, c = 7.2554(2) Å, α = 88.767(3)°, β = 84.733(2)°, γ = 75.905(2)° and V = 358.73(2) Å3, Z = 4) is isotypic with EuSi2O2N2: highly condensed silicate layers are separated by Sr2+. The samples are characterized by pronounced real structure effects owing to pseudosymmetry of partial structures. Polysynthetic twinning with domains of various sizes is ubiquitous and oriented intergrowth of domains with different orientations has also been observed and analysed in detail by means of electron diffraction and high-resolution electron microscopy. These effects also affect the X-ray powder pattern and were taken into account in a Rietveld refinement.  相似文献   

4.
A new paratungstate-A-based organic–inorganic hybrid compound with the chemical formula of [Co(en)3]2[H2W7O24]·8H2O (en = ethylenediamine) (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, IR, TG, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 17.216(3) Å, b = 14.986(3) Å, c = 23.088(8) Å, β = 128.151(2)°, V = 4684.2 Å3, Z = 1, R1 = 0.0484, and wR2 = 0.1087. The structure of 1 consists of the [H2W7O24]4− building blocks and [Co(en)3]2+ metal-organic cationic moieties, which are packed together via the electrostatic forces and extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. Interestingly, compound 1 represents the first structurally-defined hybrid compound based on the metastable paratungstate-A polyoxoanions and metal–organic units. The degradation of Rhodamine-B (RhB) under UV irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.  相似文献   

5.
《Solid State Sciences》2001,3(1-2):93-101
Dipotassium octaoxodecahydroxotetratellurate, K2[Te4O8(OH)10], has been prepared hydrothermally in acidic medium under autogenous pressure. It crystallizes in space group P21/c of the monoclinic system with Z=2 in a cell of dimensions a=5.592(1) Å, b=8.283(2) Å, c=16.255(3) Å, and β=99.62(3)°. The outstanding feature of the structure is a tetrameric [Te4O8(OH)10]2– anion built up from edge and corner sharing TeO6 octahedra. These anions and K+ cations are held together by electrostatic interactions and by hydrogen bonds. The compound decomposes in two steps at 350 and 420 °C, corresponding to a water and an oxygen loss, respectively, and affording the mixed valence oxide K2TeVI3TeIVO12.  相似文献   

6.
《Solid State Sciences》2001,3(5):587-592
Two members of a new family of inorganic phosphates of general formula AIBII6(P2O7)2P3O10; KMn6(P2O7)2P3O10 (a=5.405(2), b=26.918(11), c=6.660(5), β=107.31(3)°, V=925.1(9) Å3, space group P21/m, Z=2, Dcalc=3.481 Mg m−3, R=0.0377 for 2235 observed reflections) and AgMn6(P2O7)2P3O10 (a=5.424(7), b=26.97(4), c=6.627(9), β=106.81(7)°, V=928(2) Å3, space group P21/m, Z=2, Dcalc=3.716 Mg m−3, R=0.0594 for 1577 observed reflections) have been synthesized and identified by single crystal X-ray diffraction. The isostructural complexes present an interesting comparison of silver and potassium bonding.  相似文献   

7.
In this study, both solvent evaporation and hydrothermal methods were employed to grow hydrated sodium borate crystals using NaOH and H3BO3 as reagents, and transparent and colorless single-crystals were successfully obtained with sizes up to 12 × 6 × 6 mm3 and 6 × 5 × 4 mm3, respectively. The structure is determined by single-crystal X-ray diffraction techniques. The title compound crystallizes in the trigonal space group R32, with a = 11.1042(16) Å, b = 11.1042(16) Å, c = 21.131(4) Å, Z = 9 and R1 = 0.0322, wR2 = 0.0840. Infrared and transmission spectra are presented for the reported material. The powder second-harmonic generation (SHG) intensity measured by the Kurtz-Perry method indicates that the SHG effect of Na2B4O12H10 is about one-third times that of KH2PO4 (KDP).  相似文献   

8.
K2[CrF5·H2O] is monoclinic: a = 9.6835(3) Å, b = 7.7359(2) Å, c = 7.9564(3) Å, β = 95.94(1)°, Z = 4, space group C2/c (no 15). Its crystal structure was solved from its X‐ray powder pattern recorded on a powder diffractometer, using for the refinement the Rietveld method. It is built up from isolated octahedral [CrF5·OH2]2? anions separated by potassium cations. The dehydration of K2[CrF5·H2O] leads to anhydrous orthorhombic K2CrF5: a = 7.334(2) Å, b = 12.804(4) Å, c = 20.151(5) Å, Z = 16, space group Pbcn (no 60), isostructural with K2FeF5.  相似文献   

9.
Single crystals of MnUO4, FeUO4, and NiU2O6 were grown for the first time. The use of chloride fluxes facilitated the crystal growth. MnUO4, a hexavalent uranium compound, crystallizes in the orthorhombic space group, Imma, with a = 6.6421(19) Å, b = 6.978(2) Å, and c = 6.748(2) Å, and exhibits typical uranyl, UO22+, coordination. FeUO4 and NiU2O6 contain pentavalent uranium and are structurally related, exhibiting three-dimensional connectivity. FeUO4 crystallizes in the orthorhombic space group, Pbcn, with a = 4.8844(2) Å, b = 11.9328(5) Å, c = 5.1070(2) Å. NiU2O6 crystallizes in the trigonal space group, P321, with a = 9.0148(3) Å, c = 5.0144(3) Å.  相似文献   

10.
Single crystals of a diphosphate NaLuP2O7 have been synthesized by the flux method and characterized by single-crystal X-Ray diffraction. NaLuP2O7 crystallizes in the monoclinic system with P21/n space group with cell parameters: a = 8.9985(8) Å, b = 5.3473(5) Å, c = 12.756(1) Å, β = 103.174° (1), V = 597.67 (9) Å3, Z = 4. Its structure consists of a three-dimensional framework of P2O7 units that are corner-shared by LuO6 octahedra, forming tunnels running parallel to [010] which are occupied by Na atoms. NaLuP2O7 powder was characterized by XRD, SEM, FTIR and Raman spectroscopy. The activation energy of (1.49 eV) obtained by electrical measurements suggests the charge carriers to be the sodium cations. The activation energies obtained from impedance and loss spectra were analyzed in order to explain the mechanism of conduction. The correlation between ionic conductivity of NaLuP2O7 and its crystallographic structure was investigated and the most probable transport pathway model was determined.  相似文献   

11.
12.
《Solid State Sciences》2012,14(8):1152-1156
The ternary gallium selenide KGaSe2 has been synthesized by solid-state reactions and good quality crystal has been obtained. KGaSe2 crystallizes in the monoclinic space group C2/c with cell dimensions of a = 10.878(2) Å, b = 10.872(2) Å, c = 15.380(3) Å, and β = 100.18(3)°. In the structure, adamantane like [Ga4Se10]8− units are connected by common corners forming two-dimensional [GaSe2] layers which are separated by K+ cations. KGaSe2 exhibits congruent-melting behavior at around 965 °C. It is transparent in the range of 0.47–20.0 μm and has a band gap of 2.60(2) eV. From a band structure calculation, KGaSe2 is a direct-gap semiconductor. The band gap is mainly determined by the [GaSe2] layer.  相似文献   

13.
Single crystals of KBaMnO4 and KBaAsO4 were grown using the hydroflux method and characterized by single crystal X-ray diffraction. Both compounds crystallize in the orthorhombic space group Pnma with a = 7.7795(4) Å, b = 5.8263(3) Å, and c = 10.2851(5) Å for the manganate and a = 7.7773(10) Å, b = 5.8891(8) Å, and c = 10.3104(13) Å for the arsenate. The materials exhibit a three-dimensional crystal structure consisting of isolated MnO43− or AsO43− tetrahedra, with the charge balance maintained by K+ and Ba2+. Each tetrahedron is surrounded by six K+ and five Ba2+, and shares its corner/edge with KO10 polyhedra and corner/edge/face with BaO9 polyhedra, respectively. The crystal growth, crystal structure and magnetic properties are discussed.  相似文献   

14.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

15.
Employing the common pyridine (=py) solvent as the source of structure-directing agents (SDAs), a novel three-dimensional open-framework beryllium phosphite (Hpy)4[Be6(HPO3)8]·H2O (1), has been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. It crystallizes in the orthorhombic system, space group Pbca (No. 61), a = 20.0034(4) Å, b = 20.2188(4) Å, c = 20.9731(3) Å, V = 8482.5(3) Å3, and Z = 8. The alternating connection of BeO4 tetrahedra and HPO3 pseudopyramids give rise to a (3, 4)-connected network with multidirectional intersecting 12-ring channels. The compound possesses a low density and a new {4.8.10}{42.6.8.10.12}{42.6}3{42.8.102.12}{43.62.8} topology.  相似文献   

16.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

17.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

18.
Q.D. Zeng  R.K. Li 《Solid State Sciences》2010,12(12):2144-2147
A series of potassium rare earth oxyborates, K2RE2(BO3)2O (RE = La, Nd, Sm and Eu), have been synthesized. Single crystal of the first member of the series, K2La2(BO3)2O, has been grown by the flux method. Its structure, determined by single crystal X-ray diffraction, shows that it belongs to the monoclinic system, space group P21/c with unit cell parameters of a = 11.422(2) Å, b = 6.6803(13) Å, c = 10.813(2) Å, β = 17.23(3)° and Z = 4. Optical transmission spectrum shows that the K2La2(BO3)2O crystal is highly transparent from 215 nm to 2750 nm.  相似文献   

19.
《Solid State Sciences》2004,6(7):697-703
Gallium pentaphosphates have been synthesized for the first time. These compounds, RbGa2P5O16 and CsGa2P5O16, are isotypic to the cesium pentaphosphates CsM2P5O16 (M=Fe, V). They crystallize in the noncentrosymmetric Pn space group with a=7.4058(3) Å, b=9.2151(2) Å, c=10.0912(11) Å, β=110.768(8)°, V=643.9(1) Å3 (Z=2) and a=7.462(2) Å, b=9.241(3) Å, c=10.103(2) Å, β=110.731(16)°, V=651.5(3) Å3 (Z=2) for the rubidium and cesium compounds, respectively. The single crystal structure determination shows that the 3D [Ga2P5O16] framework is rather rigid and does not vary significantly whatever M=Fe, V, Ga and A=Rb, Cs. The strongly distorted character of the pentaphosphate unit may be at the origin of strains along the P5O16 group, which explains the difficulty to stabilize pentaphosphates.  相似文献   

20.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号