首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended horizontal cracks have been observed experimentally in a vertical column of saturated sand when a flow of water is forced to percolate upward through it. This paper provides a theory for this phenomenon. It will be shown that the presence of inhomogeneity in permeability along the length of the column is essential for such cracks to develop. It will also be shown that small initial inhomogeneity may be magnified through the transport of the finer component of the sand by percolation. Under certain conditions liquefaction takes place at a section of the sand column causing a crack to initiate and grow there. This theory is found to be in good qualitative agreement with the experimental findings. The project supported by the National Natural Science Foundation of China (19832010)  相似文献   

2.
冲击载荷下饱和砂土渗流和破坏的实验研究   总被引:16,自引:0,他引:16  
对饱和破土在冲击载荷下发现的变形和流动效应进行了落锤模拟实验研究,发现砂土骨架出现纵向排水通道和横向断裂等现象,对可能影响这些现象的主要因素进行了对比的实验,对上述实验现象进行了初步的解释.  相似文献   

3.
砂墙结构在爆炸安全防护领域具有广泛应用,为了研究激波加载下砂墙结构的冲击响应特性,基于水平激波管实验装置,开展平面激波冲击砂墙结构系列实验,采用高速纹影摄像系统捕捉流场中激波波系的演化过程和砂墙结构的运动过程。入射激波马赫数为1.827~2.413,相应入射激波载荷强度为0.378~0.724 MPa。砂墙结构利用铁砂、矾土、石英砂3种实验用砂制备,所制备砂墙结构孔隙度分别为56.6%、69.3%、56.6%。高速纹影照片显示:平面激波冲击砂墙结构发生反射和透射,伴随入射激波和透射激波的传播,在百微秒内,砂墙未产生显著运动,表现出显著的类固体动力学响应特性。基于冲击理论,确定了铁砂墙、矾土砂墙、石英砂墙的线性冲击关系,冲击关系中线性常数λ值量级为100,根据凝聚介质实用状态方程推断:较低强度载荷冲击作用下,砂墙主要产生体积变形,而由冲击引起的热能效应则可以忽略。  相似文献   

4.
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.  相似文献   

5.
The formation mechanism of the residualstrength plateau of ceramics subjected to thermal shockis addressed.A set of thermal shock experimentsof 99Al2O3 are conducted,where the thin specimensof 1 mm × 10 mm × 50 mm exhibit parallel through edgecracks,and thus permit quantitative measurements of thecrack patterns.The cracks evolve with the severity of thermal shock.It is found that there is a correlation between thelength and density of the thermal shock cracks.The increaseof crack length weakens the residual strength,whereas theincrease of crack density improves it.In a considerably widetemperature range,the two contrary effects just counteracteach other;consequently a plateau appears in the variationcurve of the residual strength.A comparison between thenumerical and experimental results of the residual strengthis made,and they are found in good agreement.This work ishelpful to a deep understanding of the thermal shock failureof ceramics.  相似文献   

6.
A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range $1.25\le {M}_\mathrm{s} \le 1.7$ and foam column heights in the range 100–450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.  相似文献   

7.
The propagation of a three-dimensional shock wave in an elastic solid is studied. The material is assumed to be a simple elastic solid in which the Cauchy stress depends on the deformation gradient only. It is shown that the growth or decay of a discontinuity ψ depends on (i) an unknown quantity φ? behind the shock wave, (ii) the two principal curvatures of the shock surface, (iii) the gradient on the shock surface of the shock wave speeds and (iv) the inhomogeneous term which depends on the motion ahead of the shock surface and vanishes when the motion ahead of the shock surface is uniform. If a proper choice is made of the propagation vectorb along which the growth or decay of the discontinuity is measured, the dependence on item (iii) can be avoided. However,b assumes different directions depending on the choice of discontinuity ψ with which one is concerned and the unknown quantity φ? behind the shock wave on which one chooses to depend. As in the case of one-dimensional shock waves, the growth (or decay) of one discontinuity may not be accompanied by the growth (or decay) of other discontinuities. A universal equation relating the growth or decay of discontinuities in the normal stress, normal velocity and specific volume is also presented.  相似文献   

8.
The breakup of a liquid droplet induced by a high speed gas stream is a typical multiphase flow problem. The shock/droplet interaction is the beginning stage of the droplet breakup. Therefore, investigation of the shock/droplet interactions would be a milestone for interpreting the mechanism of the droplet breakup. In this study, a compressible multiphase solver with a five-equation model is successfully developed to study shock/water column interactions. For code validation, interface-only, gas–gas shock tube, and gas–liquid shock tube problems are first computed. Subsequently, a planar shock wave interacting with a water column is simulated. The transmitted wave and the alternative appearances of local high- and low-pressure regions inside the water column are observed clearly. Finally, a planar shock wave interacting with two water columns is investigated. In this work, both horizontal and vertical arrangements of two water columns are studied. It is found that different arrangements can result in the diversity of the interacting process. The complex flow structures generated by shock/water column interactions are presented by flow-visualization techniques.   相似文献   

9.
A non-destructive test was carried out on a liner material—sand bentonite mixture (SB) with a continuous concentration diffusion of NaCl electrolyte. The work reported studied the spacio-temporal variation of the electrical conductivity $\sigma ^{*}_{\mathrm{s}}$ (z, t) in a diffusion soil column with different heights. A relationship between the interstitial pore fluid concentration of SB and the electrical conductivity of the solution has been established by mixing and compacting samples of sand bentonite with NaCl electrolytes at different concentrations. Electrical conductivity of compacted specimens was measured with a two-electrode cell. The conductivity measurements were used to quantify the pore fluid concentration and effective diffusion coefficient of SB liners. It is concluded here that the electrical conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid and it could be used to measure ionic movement through liners during diffusion. The experimental diffusion coefficient reached theoretical diffusion coefficient when sample height is equal to 40 cm.  相似文献   

10.
The purpose of the present investigation is to analyze the phenomenon of shock wave formation in gas-liquid foams and to explain the qualitative differences which are found when comparing results from shock tube experiments performed with foams and bubbly liquids. It is well known that oscillatory pressure waves in bubbly liquids may reach an amplitude twice as large as that of the original pressure impulse. However, experiments showed that pressure disturbances in foams always attenuate without significant change in the wave pressure profile. In the present study this behavior is explained by analyzing shock wave formation using the Burgers equation which is derived from the conservation laws for a bubbly liquid. It is shown that the parameter of non linearity in the Burgers equation describing wave propagation in bubbly liquids is about 40 times higher than in foams. At the same time coefficient of bulk viscosity of a foam is about 103 times greater than that of a bubbly liquid. This explains why in shock tube experiments with foams shock waves are not detected while they are easily observed when bubbly liquids are used under similar conditions.  相似文献   

11.
The time and depth of vertical one-dimensional projectile penetration into sandy media in the near shore region are derived. A precise definition for the physical properties and for the behavior of the sandy medium following the projectile impact are evaluated. Three separate time intervals following projectile impact are identified. During the first 3 ms of penetration, the deviatoric friction stress is shown to be negligible and the integrated Mie–Grüneisen equation of state (or, equivalently, the Hugoniot-adiabat) may be applied to compute the normal penetration resistance force from the sand pressure. In order to compute sand pressure as a function of the sand density D by the integrated Mie–Grüneisen equation of state, the Mie–Grüneisen dimensionless constants γ0 and s and the dimensional speed of sound C 0 in the sandy medium are required. In order to illustrate the one-dimensional shock wave propagation in both wet and dry sands, Hugoniot data for wet and dry silica sands are evaluated by a three degrees of freedom algorithm to compute these required constants. The numerical results demonstrate that the amplitude of the shock wave pressure in the wet silica sand (41% porosity) is approximately one-third of the shock wave pressure amplitudes in the dry silica sands (22% and 41% porosity). In addition, the shock wave pressure dampens quicker in the wet sand than in the dry sands.  相似文献   

12.
Dynamic compressive behavior of dry quartz sand (Quikrete #1961 sand quarried in Pensacola, FL) under confinement was characterized using a modified long split Hopkinson pressure bar (SHPB). Sand grains were confined inside a hollow cylinder of hardened steel and capped by cemented tungsten carbide cylindrical rods. This assembly was subjected to repeated shaking to consolidate sand to attain precise bulk mass densities. It is then sandwiched between incident and transmission bars on SHPB for dynamic compression measurements. Sand specimens of five initial mass densities, namely, 1.51, 1.57, 1.63, 1.69, and 1.75 g/cm3, were characterized at high strain rates near 600 s−1, to determine the volumetric and deviatoric behaviors through measurements of both axial and transverse responses of a cylindrical sand sample under confinement. The stress–strain relationship was found to follow a power law relationship with the sand initial bulk density, with an exponent of 8.25, indicating a behavior highly sensitive to mass density. The energy absorption density and compressibility of sand were determined as a function of axial stress.  相似文献   

13.
The formation mechanism of “water film” (or crack) in saturated sand is analyzed theoretically and numerically. The theoretical analysis shows that there will be no stable “water film” in the saturated sand if the strength of the skeleton is zero and no positions are choked. It is shown by numerical simulation that stable water films initiate and grow if the choking state keeps unchanged once the fluid velocities decrease to zero in the liquefied sand column. The developments of “water film” based on the model presented in this paper are compared with experimental results.The project supported by the National Natural Science Foundation of China (40025103 and 10202024) and Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences. The English text was polished by Keren Wang.  相似文献   

14.
Summary  In this study, the interaction between two semi-elliptical co-planar surface cracks is considered when Poisson's ratio ν = 0.3. The problem is formulated as a system of singular integral equations, based on the idea of the body force method. In the numerical calculation, the unknown density of body force density is approximated by the product of a fundamental density function and a polynomial. The results show that the present method yields smooth variations of stress intensity factors along the crack front very accurately, for various geometrical conditions. When the size of crack 1 is larger than the size of crack 2, the maximum stress intensity factor appears at a certain point, β1=177, of crack 1. Along the outside of crack 1, that is at β1=0∼90, the interaction can be negligible even if the two cracks are very close. The interaction can be negligible when the two cracks are spaced in such a manner that their two closest points are separated by a distance exceeding the small crack's major diameter. The variations of stress intensity factor of a semi-elliptical crack are tabulated and charted. Received 30 August 1999; accepted for publication 22 February 2000  相似文献   

15.
Non-equilibrium radiation measurements behind strong shock wave for simulated Martian atmosphere are presented in this paper. The shock wave is established in a hydrogen oxygen combustion driven shock tube. Timeresolved spectra of the Δv = 0 sequence of the B 2Σ+X 2Σ+ electronic transition of CN have been observed through optical emission spectroscopy (OES). A new method, which is based on fitting high resolution spectrum for rotational and vibrational temperatures measurement, is proposed to diagnose temperature distribution behind the shock wave. It is estimated that the current scheme has the maximum deviation less than 8% (1σ) for vibrational temperature measurement through detailed analysis of the influence of the uncertainties of spectroscopic constants and spectral resolution. Radiation structure of the shock layer, including induction, relaxation and equilibrium process, and corresponding rotational and vibrational temperatures are obtained through time gating OES diagnostics with sub-microsecond temporal resolution. The present extensive results will strongly benefit the reaction rate estimation and computational fluid dynamics (CFD) code validation in high enthalpy Mars reentry chemistry.  相似文献   

16.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
B. W. Skews 《Shock Waves》1991,1(3):205-211
This paper deals with the waves that are reflected from slabs of porous compressible foam attached to a rigid wall when impacted by a weak shock wave. The interest is in establishing possible attenuation of the pressure field after a shock or blast wave has struck the surface. Foam densities from 14 to 38 kg/m3 were tested over a range of shock wave Mach numbers less than 1.4. It is shown that the initial reflected shock wave strength is accurately predicted by the pseudo-gas model of Gelfand et al. (1983), with a pressure ratio of approximately 80% of the value for reflection off a rigid wall. Evidence is presented of gas entering the foam during the early stages of the process. A second wave emerges from the foam at a later stage and is separated from the first by a region of constant velocity and pressure. This second wave is not a shock wave but a compression front of significant thickness, which emerges from the foam earlier than predicted by the pseudo-gas model. Analysis of the origin of this wave points to much more complex flows within the foam than previously assumed, particularly in an apparent decrease in average wave front speed as the foam is compressed. It is shown that the pressure ratio across both these waves taken together is slightly higher than that for reflection off a rigid wall. In some cases this compression wave train is followed by a weak expansion wave.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

18.
When subjected to severe thermal shocks a functionally graded ceramic (FGC) suffers strength degradation due to the thermally-induced damages in the material. Multiple surface cracking has been observed as one of the dominant defects/damages affecting the thermal shock behavior of ceramics. This paper presents a thermo-fracture mechanics model to investigate the thermal shock residual strength behavior of elastically homogeneous but thermally graded FGCs undergoing multiple surface cracking. We consider an FGC plate with an array of parallel edge cracks at the thermally shocked surface. A Fourier transform/superposition method is used to derive the singular integral equation of the thermal shock crack problem. The critical thermal shock that causes crack propagation and thermal shock damage are determined using linear elastic fracture mechanics. The thermal shock residual strength of the FGC as a function of thermal shock severity and crack density (crack spacing) is subsequently evaluated. Numerical calculations are carried out for two FGC materials, i.e., Al2O3/Si3N4 and TiC/SiC FGCs, to illustrate the effects of crack density (crack spacing) and material gradation on the thermal shock strength behavior of FGCs. It is found that a higher crack density (lower crack spacing) together with appropriately graded material properties significantly enhances the residual strength of the thermally shocked FGCs.  相似文献   

19.
Junping Shi  Wentao Ma  Ning Li 《Meccanica》2013,48(9):2263-2270
An extended meshless method based on partition of unity was used in this study to simulate multiple cracks. The cracks are implicitly denoted by a jump in the displacement field function, which has nodes that have domains of influence completely segmented by cracks. Nodes whose domains of influence are partially segmented by cracks are extended by the crack tip singularity function. The influence domain of a node is independent of cracks so that the sparsity of the system equations should not be affected by cracks and the computing time should not increase with the effect of the cracks. Additionally, r ?1/2 singularity can be accurately reproduced at the crack tip. Compared with the modified intrinsic enriched meshless method, our method has a higher computational efficiency and precision. Several numerical examples show that the extended meshless method based on partition of unity is feasible and effective in simulating multiple cracks.  相似文献   

20.
为研究浅埋炸药爆炸形貌及其冲击作用效应,提出了一套新型试验工装,通过浅埋砂爆试验,系统探究了浅埋爆炸过程中冲击波的传播、爆炸产物与砂土的喷射轨迹、靶板的变形形貌以及爆炸载荷的空间分布情况。结果表明:浅埋爆炸在空气中产生冲击波,其传播速度大于爆炸产物与砂土的喷射速度;起爆后的爆炸产物与砂土迅速向外喷射,体积随时间不断膨胀,撞击到靶板后向四周扩散;通过特 殊设计的试验工装与靶板,定性得出浅埋砂爆载荷产生的冲量在空间中呈非均匀分布,即中间最大,向四周逐渐减小。对比分析2次不同试验,发现炸药埋深影响爆炸产物和砂土喷射时的相对位置:埋深较小时,爆炸产物会冲破覆盖的砂层,直接作用到靶板;埋深较大时,爆炸产物基本被砂层包覆,随砂土共同作用到靶板;此外,增大炸药埋深会延缓爆炸产物与砂土的喷射时间。砂土的类型直接影响靶板的变形形貌,按北约标准AEP-55配做的砂土不仅使靶板产生整体弯曲变形,还在靶板上形成大量凹坑,产生侵彻效果,而普通的河砂仅使靶板产生整体弯曲变形,无明显的侵彻效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号