首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含三聚氰胺多孔材料分层复合介质吸声特性*   总被引:1,自引:1,他引:0       下载免费PDF全文
白聪  沈敏 《应用声学》2019,38(1):76-84
三聚氰胺泡沫材料是一种具有高开孔率的多孔材料,具备优良的吸音、防火隔热及环保性能,可以作为吸声材料与弹性板、空腔介质形成复合结构,在建筑、航空、交通工具等工程领域有广泛的应用。该文基于Biot理论和分层介质在交界面处的不同边界条件,建立非均匀复合介质背衬刚性壁面结构的理论声学模型,详细分析了多孔材料布局对复合结构吸声特性的影响。该文理论模型计算的结果与阻抗实验得到的垂直入射吸声系数基本一致,验证了理论模型的正确性。结果表明:在多孔材料前面增加空气层可以改善高频吸声特性;在多孔材料后面增加空气层可以改善复合结构低频吸声特性。通过合理配置多孔材料,可以在应用需求频段上达到满意的吸声效果。  相似文献   

2.
高开孔率的发泡材料(如三聚氰胺、聚氨酯发泡材料)具有优良的吸声、隔热防火、防腐及环保性能,可以作为吸声、阻尼等材料应用于建筑、航空、交通工具等领域.该文基于Biot理论和多层介质声波传播理论(传递矩阵法),建立多层多孔吸声结构背衬刚性壁的理论模型,利用遗传算法优化多层结构厚度和质量.将理论模型计算结果与阻抗管测试结果进...  相似文献   

3.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

4.
A gradiently slit-perforated double-porosity material is proposed by introducing macro-scale periodic gradient slit-perforations into traditional porous materials with singleporosity.This material is one kind of multiscale material since it includes two scales of matrix micro-pore size and slit-perforation size.A theoretical model is developed for the sound absorption of the gradiently slit-perforated double-porosity material.In the model,the material is divided into lots of thin layers and each layer is approximated to be straight slit-perforated material.The equivalent density and dynamic compressibility of each thin layer are given by using the low or high permeability contrast double-porosity theory.Then the sound pressure and particle velocity relations between adjacent thin layers are obtained by employing the transfer matrix method.Finally,the surface acoustic impedance and the sound absorption of the gradiently slit-perforated porous material can be calculated.A finite element model is further established to validate the accuracy of the theoretical model.In the considered frequency range of 100-3000 Hz,the simulation results agree well with theoretical results.The influence of multiscale structural parameters on the sound absorption performance of the porous materials is analyzed theoretically and numerically.It is proved that the multiscale structure design can significantly improve the sound absorption performance of porous materials.Compared to the slit-perforation gradient,the slit-perforation width plays a more significant influence on sound absorption.The sound absorption enhancement mechanism of the multiscale structure design is revealed by the analysis of the sound pressure and energy dissipation distributions in the material.This work provides a multiscale structural design method for improving the sound absorption performance of traditional porous materials at broadband frequency.  相似文献   

5.
A method to quantify the through-thickness asymmetry of a sound absorbing porous material is proposed and discussed. Its calculation only requires impedance tube measurements of the acoustical surface impedance performed on both sides of the tested material. The method may be used for quality control or to assess the level of asymmetry of the material in terms of its acoustic properties. As a first validation, a two-layered porous system seen as an equivalent asymmetrical single porous layer with a sudden change in its physical properties is studied. From this study, a criterion of asymmetry is suggested and experimentally tested.  相似文献   

6.
This work investigates the acoustical properties of a multilayer porous material in which periodic inclusions are embedded. The material is assumed to be backed by a rigid wall. Most of the studies performed in this field used the multipole method and are limited to circular shape inclusions. Here, a mode matching approach, more convenient for a layered system, is adopted. The inclusions can be in the form of rigid scatterers of an arbitrary shape, in the form of an air-filled cavity or in the form of a porous medium with contrasting properties. The computational approach is validated on simple geometries against other numerical schemes and with experimental results obtained in an anechoic room on a rigid grating embedded in a porous material made of 2 mm glass beads. The method is used to study the acoustic absorption behavior of this class of materials in the low frequency range and at a range of angles of incidence.  相似文献   

7.
The effectiveness of macro perforated porous materials to control noise levels inside a cavity is investigated. This is done using a finite element formulation based on the Biot-Allard theory that accounts for sound propagation in a poro-elastic medium. Earlier investigations have shown that macro-holes in a porous material can enhance low frequency sound absorption. However, this has been demonstrated in free field or waveguide environments. When such an approach is used in a cavity, it is seen that only certain patterns of macro-holes, dictated by cavity mode shapes, enhance noise reduction in the higher frequency ranges. This phenomenon is shown to be independent of porous material properties by considering two different materials. A correlation between the mode shapes and material removal is also established. A detailed convergence study for both cavity and poro-elastic finite element models, establishes the suitability of using higher order interpolation functions for coupled cavity-poro-elastic acoustic analysis.  相似文献   

8.
An analytical study based on rigid frame model is demonstrated to evaluate the acoustic absorption of coir fiber. Effects of different conditions such as combination of air gap and perforated plate (PP) are studied in this work. Materials used here are treated as rigid rather than elastic, since the flow resistivity of coir fiber is very low. The well-known rigid frame Johnson-Allard equivalent-fluid model is applied to obtain the acoustic impedance of single layer coir fiber. Atalla and Sgard model is employed to estimate the surface impedance of PP. Acoustic transmission approach (ATA) is utilized for adding various consecutive layers in multilayer structure. Models are examined in different conditions such as single layer coir fiber, coir fiber backed with air gap, single layer PP in combination with coir fiber and air gap. Experiments are conducted in impedance tube on normal incidence sound absorption to validate the results. Results from the measurement are found to be in well agreement with the theoretical absorption coefficients. The performance of the rigid frame modeling method is checked more specifically in all conditions, by the mean prediction error rate of normal incidence sound absorption coefficients. Comparison between the measured absorption coefficients and predicted by rigid frame method shows discrepancy lower than 20 and 15% for most of the conditions in the frequency range of 0.2?C1.5 and 1.5?C5 kHz, respectively. Moreover, acoustic absorption of various single and multilayer structures is compared with the simpler empirical methods such as Delany-Bazley and Miki model; and complicated method such as Biot-Allard Model and Allard Transfer Function (TF) method. Comparisons show that the presented method offers a better accuracy of the results than the empirical models. Subsequently, it can provide almost same absorption plot with Biot-Allard model (single layer combination) and TF method (multilayer combination) proving it to be a comprehensively easy and general analytical tool. Therefore, the rigid frame model can be implemented relatively easier than other similar models to analyze the acoustic absorption of coir fiber in most of the conditions.  相似文献   

9.
Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.  相似文献   

10.
This paper presents a straightforward application of an indirect method based on a three-microphone impedance tube setup to determine the non-acoustic properties of a sound absorbing porous material. First, a three-microphone impedance tube technique is used to measure some acoustic properties of the material (i.e., sound absorption coefficient, sound transmission loss, effective density and effective bulk modulus) regarded here as an equivalent fluid. Second, an indirect characterization allows one to extract its non-acoustic properties (i.e., static airflow resistivity, tortuosity, viscous and thermal characteristic lengths) from the measured effective properties and the material open porosity. The procedure is applied to four different sound absorbing materials and results of the characterization are compared with existing direct and inverse methods. Predictions of the acoustic behavior using an equivalent fluid model and the found non-acoustic properties are in good agreement with impedance tube measurements.  相似文献   

11.
Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.  相似文献   

12.
For modeling of jute as acoustic material, knowledge of its non-acoustical parameters like porosity, tortuosity, air flow resistivity, thermal and viscous characteristic lengths is a prime requisite. Measurement of these non-acoustical parameters is not straightforward and involves a dedicated measurement setup. So in order to overcome this issue, the inverse acoustical characterization can be used. In this paper, the particle swarm optimization method (PSO) is used as an optimization method. This method estimates the non-acoustical parameters of jute material in felt form by minimizing the error between experimental and theoretical sound absorption data. In this work, the impedance prediction models for fibrous materials like Johnson–Champoux–Allard model with rigid and limp frame and Garai–Pompoli model is used for sound absorption coefficient calculation by the transfer matrix method along with the PSO. The inverse estimated non-acoustical parameters for jute material are then compared with estimated and experimentally measured parameters for jute felts. Using these inversely predicted parameters, sound absorption of multilayer sound absorbers is also studied.  相似文献   

13.
In this work, we have developed an analytical model of a multilayer porous material based on the transfer matrix method to predict the absorption behavior at plane wave incidence. The aim of this study is to modify/tune the sound absorption coefficient of a felt to obtain an improved absorbing performance in the mid frequency range without increasing its weight. To achieve this target, the developed model has been used to find the best combination of each layer type and thickness. The analytical results were validated by test results.  相似文献   

14.
The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.  相似文献   

15.
The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.  相似文献   

16.
A method for evaluating the acoustical properties of homogeneous and isotropic porous materials that may be modeled as fluids having complex properties is described here. To implement the procedure, a conventional, two-microphone standing wave tube was modified to include: a new sample holder; a section downstream of the sample holder that accommodated a second pair of microphone holders and an approximately anechoic termination. Sound-pressure measurements at two upstream and two downstream locations were then used to estimate the two-by-two transfer matrix of porous material samples. The experimental transfer matrix method has been most widely used in the past to measure the acoustical properties of silencer system components. That procedure was made more efficient here by taking advantage of the reciprocal nature of sound transmission through homogeneous and isotropic porous layers. The transfer matrix of a homogeneous and isotropic, rigid or limp porous layer can easily be used to identify the material's characteristic impedance and wave number, from which other acoustical quantities of interest can be calculated. The procedure has been used to estimate the acoustical properties of a glass fiber material: good agreement was found between the estimated acoustical properties and those predicted by using the formulas of Delany and Bazley.  相似文献   

17.
Numerical simulations usually require boundary conditions in terms of surface acoustic impedance. The surface acoustic impedance depends on the porous material acoustic properties (e.g., characteristic impedance and wave number) and its thickness as well as the type of wave front impinging on its surface. The locally reactive behaviour hypothesis is often assumed to simplify the choice of proper boundary conditions assigning a constant acoustic impedance value on the porous material surface at a given frequency and for each angle of sound incidence. This hypothesis is also used in measurement procedures or for the estimation of the edge effects.  相似文献   

18.
H.K. Kim 《Applied Acoustics》2010,71(7):607-615
The influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete is systematically investigated in the present study. Three levels of cement flow (80%, 110%, and 140%) and five types of aggregates (normal aggregates of 8-13 mm and 13-19 mm and lightweight aggregates of 4-8 mm, 8-12 mm, and 12-19 mm) are used, and effects of the application of AE admixtures in paste were also studied. Single-layered and double-layered porous concrete specimens are fabricated to examine the effect of different layer configuration on the acoustic characteristics. For the purpose of comparison, the void ratio, compressive strength, and sound absorption coefficient of the specimens are used as evaluation parameters. Based on the findings of the study, a sound absorbing porous concrete with a maximum absorption coefficient of approximately 1.00 is developed, and the minimum absorption coefficient of the ‘double-layered porous concrete’ structure is shown to be more than 0.60 with a frequency of 400 Hz or above, considering the tolerant error.  相似文献   

19.
基于高速列车减振降噪需求,本文应用Biot提出的多孔弹性介质声传播理论,采用传递矩阵法理论推导了典型分层结构的隔声量计算公式,给出了空气层与多孔材料对分层复合结构隔声特性的影响。将传递矩阵与遗传算法相结合,对特定中低频段内的复合结构隔声特性进行了优化。研究结果表明:空气层和多孔材料有助于分层复合结构隔声量的提高,特别是空气层对低频隔声有很好的促进作用,另外空气层与多孔材料的分配情况也影响着隔声效果。含有空气层的复合结构在提高隔声量的同时降低了结构的总体重量,实现了高速列车隔声材料低能耗和轻量化的设计目标。  相似文献   

20.
李晨曦  胡莹  何立燕 《应用声学》2019,38(6):954-960
为拓宽微穿孔板的吸声频带,该文用有限元算法建立了典型微穿孔板和穿入不同数量金属纤维的微穿孔板模型,研究了两种微穿孔板的吸声系数、声阻抗和微孔内法向质点速度的空间分布,并进行了试验验证。有限元仿真和试验数据表明:穿入金属纤维可以拓宽微穿孔板的吸声频带,吸声系数也随纤维根数的增加而下降;吸声系数仿真结果与试验结果趋势一致,仿真模型可以有效模拟穿入纤维前后微穿孔板的吸声特性;穿入金属纤维导致黏滞效应引起的低质点速度区域增大,声阻增加,引起吸声系数的降低,而声抗变化不大。研究发现,有限元仿真方法适用于结构相对复杂的微穿孔结构的声学建模,能直观地体现微孔复杂结构的影响,值得继续深入研究和工程应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号