首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
These days, an important concern in water contamination is the remaining dyes from various sources (for instance, dye and dye intermediates industries, pulp and paper industries, textile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad range of persistent organic contamination has been entered to the wastewater treatment systems or natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. Therefore, it is necessary to remove these organic pollutants before releasing them into the environment. Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4 nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of varied circumstances, such as various surfactants, sonication power, and sonication time was considered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed for the elimination of various organic dyes under visible radiation and exposed that this compound could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under visible light. Besides, the result showed that various parameters, including, pH, dye concentration, types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.  相似文献   

2.
In the present study, Nd3+-doped ZnSe nanoparticles with variable Nd contents were successfully synthesized via a hydrothermal process using Neodymium (III) chloride hexahydrate as the doping source. X-ray diffraction, UV–Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy and transmission electron microscopy were used for characterization of the synthesized nanoparticles. It was confirmed by the DRS analysis that both of the undoped and Nd-doped ZnSe samples had significant optical absorption in the visible light range. The photocatalytic performance of as-synthesized nanoparticles was investigated towards the decolorization of C. I. Acid Orange 7 solution under visible light irradiation. Results indicated that the loading of Nd dopant into ZnSe nanoparticles significantly enhanced the photocatalytic activity of pure ZnSe with increasing Nd loading up to 6 mol% (color removal efficiency of 24.31 % for ZnSe and 84.20 % for Nd0.06Zn0.94Se after 120 min of treatment) and then the photocatalytic activity began to decrease.  相似文献   

3.
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.  相似文献   

4.
采用水热法和光还原法制备了BiOBr/HPW/Au光催化剂。表征结果表明,BiOBr/HPW/Au光催化剂成功制备,在可见光照射下,BiOBr/HPW/Au具有良好的光催化降解罗丹明B活性,其一级反应动力学速率常数是BiOBr的3.55倍。捕获剂实验结果表明,该反应过程中主要的活性物种是·O2-,BiOBr/HPW/Au具有高光催化活性的主要因为是BiOBr、HPW和Au纳米粒子三者的相互作用,提高了BiOBr对可见光的吸收以及电子-空穴对的分离效率,进而提高BiOBr的可见光催化活性。  相似文献   

5.
BiOCl/BiOI composites with a visible light response were prepared by a simple hydrothermal method. Even though both single BiOCl and BiOI show low photocatalytic activity, BiOCl/BiOI composites provide enhanced efficiency in decomposing organic compounds including Methyl Orange (MO) and Rhodamine B (RhB). Furthermore, the 20%BiOCl/BiOI composite shows the highest efficiency for decomposing MO, while the highest performance is observed for the degradation of RhB over 70%BiOCl/BiOI composite. A possible photocatalytic mechanism has been proposed based on the relative experiments and the band positions of BiOCl and BiOI.  相似文献   

6.
Both substitutional and interstitial nitrogen-doped titanium dioxides (N-TiO2) were prepared. Their surface states were clarified by XPS spectra of N 1s, O 1s and Ti 2p. The results of photocatalysis show that both substitutional and interstitial N impurities greatly enhance the photoactivity of TiO2 in visible light. Moreover, the visible light activity of interstitial N-doped TiO2 is higher than that of substitutional N-doped TiO2. The microwave synthesis presented in this paper is a promising and practical method to produce interstitial nitrogen-doped photocatalysts with high visible light activity.  相似文献   

7.
8.
A novel ZnCo2O4/Bi2O3 heterojunction photocatalyst was prepared via balling method. The enhanced photocatalytic activity is mainly attributed to the broad photoabsorption and low recombination rate of photogenerated electron-hole pairs, which is driven by the photogenerated potential difference formed at the ZnCo2O4/Bi2O3 heterojunction interface.  相似文献   

9.
Research on Chemical Intermediates - In this study, various compositions of ternary ZnS/SnS/Ag2S nanocatalysts were prepared for the first time through a wet chemical method. The as-prepared...  相似文献   

10.
以硝酸铋、碘化钾、溴化钠和聚乙二醇-400为主要原料,利用水热法制备出具有较小粒径的BiOBr/BiOI复合体,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外可见漫反射(DRS)等测试手段对样品的形貌、物相组成进行了表征。以罗丹明B为模拟污染物,研究了可见光下所制备样品的光催化性能。结果表明:BiOBr/BiOI复合体的光催化性能高于单一的BiOBr和BiOI,光照80 min后罗丹明B的降解效率可达95.6%。  相似文献   

11.
BiOBr uniform flower-like hollow microsphere and porous nanosphere structures have been successfully synthesized through a one-pot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C(16)mim]Br). The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). Possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid [C(16)mim]Br played the role of solvent, reactant and template at the same time. Moreover, the photocatalytic activities of BiOBr flower-like hollow and porous structures were evaluated on the degradation of rhodamine B (RhB) under visible light irradiation. The results assumed that BiOBr porous nanospheres sample showed much higher photocatalytic activity than the conventionally prepared sample and TiO(2) (Degussa, P25). The relationship between the structure of the photocatalyst and the photocatalytic activities were also discussed in detail; it can be assumed that the enhanced photocatalytic activities of BiOBr materials could be ascribed to a synergistic effect, including high BET surface area, the energy band structure, the smaller particle size and light absorbance.  相似文献   

12.
Nickel, nitrogen-codoped mesoporous TiO2 microspheres (Ni–N–TiO2) with high surface area, and an effective direct band gap energy of ∼2.58 eV. Nickel sulfate used as the Ni source and ammonia gas as the N source here. The efficiency of the as-prepared samples was investigated by monitoring the degradation of Rhodamine B under visible light irradiation. The experimental results indicate that Ni-doped mesoporous TiO2 microspheres show higher photocatalytic activity than mesoporous TiO2 microspheres under visible light irradiation. It mainly due to that the electron trap level (Ni2+/Ni+) promoting the separation of charge carriers and the oxygen vacancies inducing the visible light absorption. In addition, Ni–N–TiO2 shows enhanced activity compared with Ni–TiO2. Codopants and dopants are found to be uniformly distributed in TiO2 matrix. Among the all samples the 0.5% molar quantity of Ni dopant and 500 °C 2 h nitriding condition gives the highest photocatalytic activity. The treatment of ammonia gas on Ni–TiO2 sample induced oxygen vancancies, substitutional and interstitial N. A suitable treatment by ammonia gas also promote separation of charge carriers and the absorption of visible light. The active species generated in the photocatalytic system were also investigated. The strategy presented here gives a promising route towards the development of a metal and non-metal codoped semiconductor materials for applied photocatalysis and related applications.  相似文献   

13.
A novel chlorine-doped titanium dioxide catalyst with visible light response was prepared by hydrolysis of tetrabutyl titanate in hydrochloric acid. The catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Results showed that the doped element of Cl lowered the temperatures of phase transformation of TiO2 from amorphous to anatase and from anatase to rutile. The absorption edge of chlorine-doped TiO2 calcined at 300°C shifted to visible light region. X-ray photoelectron spectroscopy results proved that chlorine existed in the TiO2 crystal lattice as anion. The photocatalytic degradation of phenol showed that under visible light (λ > 400 nm) irradiation, the chlorine-doped TiO2 calcined at 300°C displayed the best performance, the degradation ratio of phenol was 42.5% after 120 min. Translated from Chinese Journal of Catalysis, 2006, 27(10): 890–894 [译自: 催化学报]  相似文献   

14.
微波辅助离子热合成技术因其加热和反应速度快、反应时间短、产物选择性高、环保、节能等优点, 而广泛应用于纳米棒、纳米线和中空纳米微球等各种形貌功能材料的合成. BiOBr 光催化剂具有毒性低、光生空穴氧化能力强、光降解活性高等优点, 在光催化降解污染物方面研究非常广泛. 虽然各种形貌的 BiOBr 光催化剂可以通过传统的溶剂热法合成,但仍然需要开发绿色和高效节能的合成方法, 来设计新型结构和高光催化降解活性的 BiOBr 光催化剂. 本文首次报道了由微波辅助离子热自组装的方法合成新型结构的 BiOBr 微米立方体. 该 BiOBr 由规则的多层纳米片组成, 其通过在 Br-端表面上选择性吸附离子液体形成, 随后形成氢键的π-π堆叠. 结果显示 BiOBr 是由厚度小于 50 nm 的纳米片组装成为 4 μm 左右的纳米立方块. 其中 Bi:Br:O 摩尔比为 1:1:1, 表明生成纯化学计量比的 BiOBr, 且具有高结晶度的纯四方相. 我们通过添加不同的表面活性剂, 进一步确认氢键-co-π-π叠层在 BiOBr 片层立方块形成中的重要性.将 BiOBr 片层立方块研磨粉碎后其 BET 表面积为从 2.30 急剧增至 17.3 m2/g, 但其降解 RhB 活性却大幅度下降. 由于纳米片层的层间反射和散射, 有效地提升了 BiOBr 的可见光吸收, 光学带隙由 2.66 窄化为 2.56 eV, 因而具有高的可见光光降解活性和优异的稳定性及矿化能力. 光催化降解 180 min 后, 罗丹明 B 的转化率约为 99.57%, 而有机碳去除率高达12.24%; 对于磨碎的 BiOBr 罗丹明 B 的转化率和有机碳去除率分别为 68.68% 和 8.62%. 光催化反应前后的 BiOBr 中, Bi3+离子的 XPS 峰位置没有明显的变化, 进一步表明 BiOBr 光催化剂具有较高的稳定性. 这种具有高活性、优异的稳定性以及高矿化能力的 BiOBr, 在实际应用光催化降解染料废水和清洁能源方面显示出很好的潜力. 此外, 通过光催化反应过程中不同捕获剂的添加确定了光降解的主要活性物种. 当加入硝酸银溶液的时候, 由于光生电子快速被 Ag+离子捕获, 光降解活性明显下降. 活性物种的捕获实验表明, 光生电子为主要的活性物种.  相似文献   

15.
可见光响应的硫掺杂TiO2的制备、表征及其光催化活性   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了硫掺杂TiO2光催化剂粉末.光催化降解罗丹明B实验结果表明,钛酸四丁酯与硫脲的摩尔比Ti/S=2.7∶ 1,经600℃热处理后光催化活性最佳.通过紫外可见漫反射吸收光谱(DRS)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、傅立叶变换红外光谱(FT-IR)以及表面光电压谱(SPS)等研究结果表明,适量的硫掺杂导致TiO2有效地抑制晶相转变.在热处理过程中由S2-被氧化为S4+并进入TiO2晶格中取代部分Ti4+,发生晶格畸变,带隙变窄,使催化剂吸收光谱红移至550 nm,诱发可见光活性.  相似文献   

16.
In this study, a photocatalyst with visible light photocatalytic activity was obtained using raw materials, including commercial TiO2, sulfuric acid, and calcined kaolin (CK). The photocatalyst was prepared via a dissolving/impregnating process, in which acidic Ti sol was obtained by initially dissolving TiO2 particles in sulfuric acid, and then using the sol as impregnant for the CK. The prepared photocatalyst had wide spectral region and narrow band gap. In addition, the impregnation can create acid sites on the obtained composite surface and consequently improve the activity. A series of tests was performed to characterize the properties of the prepared samples. The visible light photocatalytic degradation of methyl orange (MO) in an aqueous solution was used as a probe reaction to evaluate the photocatalytic activities of the obtained samples. Under visible light irradiation, approximately 80 % of MO (with initial concentration of 20 mg/m3) was degraded in 3 h on the photocatalyst prepared by impregnating CK in acidic Ti sol, which was obtained using approximately 60 % H2SO4 solution followed by calcination at 400 °C. The acidity of the photocatalyst is the main factor that affects the catalytic activity of the photocatalytic degradation of MO.  相似文献   

17.
《Solid State Sciences》2012,14(4):535-539
β-AgVO3 nanowires are synthesized by the hydrothermal method. The synthesis yields nanowires with a monoclinic phase structure. Typical nanowires have diameter of about 200–700 nm and length up to 300 μm. Photocatalytic degradation of Rhodamine B dye is investigated. It is found that the β-AgVO3 nanowires possess excellent catalytic degradation activity owing to its effective visible light absorption and well crystallization. The highly photocatalytic activity suggest its possible application in the organic pollutant treatment under visible light irradiation.  相似文献   

18.
Spherical silica and zirconia mixed titania and pure titania samples were prepared in presence of cetyltrimethylammonium bromide (CTAB) through controlled hydrolysis of corresponding metal alcoxides. Effect of surfactant amount and calcinations temperature on morphology, surface area and photocatalytic activity is studied using PXRD, SEM, FTIR, Solid state UV-vis spectroscopy and BET surface area. It is well observed that in presence of 2 mol% CTAB, uniform sized spherical oxide particles can be synthesized. However, increasing or decreasing the surfactant amount does not favor the spherical particle formation. Material synthesis in presence of CTAB not only helps in the spherical particle formation but also increases the surface area and visible light absorption. Studies on photocatalytic lead removal with respect to calcination temperature indicate that the calcination at 500 degrees C is most suitable for the best photocatalytic activity. Mixing of zirconia and silica helps in anatase phase stabilization even at 900 degrees C calcination. Accordingly low decrease in surface area even at 900 degrees C calcination is observed. Due to the phase stabilization and higher surface area binary oxide materials showed comparatively better photocatalytic activity even after calcination at 900 degrees C. So it can be concluded that present synthesis approach can produce uniform sized spherical binary oxide materials with better photocatalytic activity in visible light.  相似文献   

19.
化石能源的使用可产生大量CO2,带来严重的温室效应。光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用。高效光催化材料的开发是发展光催化技术的关键。迄今,在已开发的所有半导体光催化材料中, TiO2仍是广泛研究的明星材料。在实际使用中, TiO2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率。近年来,越来越多的研究表明TiO2的结构与形貌特征极大地影响其光催化效率。尤其, TiO2的外露晶面设计与晶面效应研究引起了广泛关注。由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿TiO2(001)晶面是光催化活性晶面。后来,越来越多研究表明并非锐钛矿TiO2(001)晶面的暴露比例越高其光催化活性就越高。最近,我们发现锐钛矿TiO2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应。密度泛函理论计算表明,锐钛矿TiO2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低。基于此我们提出,具有合适比例的锐钛矿TiO2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结。表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率。在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的TiO2微米片。利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能。电镜照片结果表明,我们所制备的氮自掺杂锐钛矿TiO2微米片的(001)晶面与(101)晶面比例分别为65%和35%。基于我们前期研究结果, TiO2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明。同时,由于N的原位掺杂,所制备的TiO2微米片具有优异的可见光捕获能力。由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂TiO2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂TiO2纳米粒子等参考样品的可见光光催化性能更优异。研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善TiO2的可见光利用效率和光生电子-空穴分离效率,优化TiO2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路。  相似文献   

20.
Four different sols, pure TiO2, F doped TiO2, Fe doped TiO2, and F–Fe co-doped TiO2 sols, were prepared by peroxidation at low temperature. The crystal structure, morphology, light adsorption, and photocatalytic properties of the pure and doped TiO2 were examined by X-ray diffraction, transmission electron microscopy, and ultraviolet–visible spectrophotometry. The relationship between the average size, crystal type, range of visible light absorption, and photocatalytic activity and content and type of doped ions were investigated. The results showed that the average size of the F–Fe co-doped TiO2 composed of both the anatase and rutile phases was the same as that of pure TiO2. Furthermore, the visible light photocatalytic activity of the F–Fe co-doped TiO2 was significantly improved over pure TiO2, F-doped TiO2, and Fe-doped TiO2 due to the large red shift in the light adsorption edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号