共查询到20条相似文献,搜索用时 15 毫秒
1.
《Arabian Journal of Chemistry》2023,16(2):104444
In this paper, α-Fe2O3 nanoparticles were fabricated via the combustion process using glucose and sucrose as organic fuels for the first time. The fabricated products were characterized using XRD, FT-IR, HR-TEM, and UV–vis spectrophotometer. The average crystallite size of the α-Fe2O3 samples, which were synthesized using glucose and sucrose fuels, is 27.25 and 6.13 nm, respectively. The HR-TEM images confirmed the presence of spherical and irregular shapes with an average diameter of 31.92 and 8.83 nm for the α-Fe2O3 samples, which were synthesized using glucose and sucrose fuels, respectively. The optical energy gap of the α-Fe2O3 samples, which were synthesized using glucose and sucrose fuels, is 2.00 and 2.48 eV, respectively. Additionally, the synthesized α-Fe2O3 samples were employed as a photocatalyst for the degradation of methyl orange dye under UV irradiations in the absence and presence of hydrogen peroxide. The optimum pH, irradiation time, and dose of α-Fe2O3 that achieved the highest degradation efficiency in the presence of hydrogen peroxide (82.17 % in the case of using an α-Fe2O3 sample which was synthesized using glucose or 95.31 % in the case of using an α-Fe2O3 sample which was synthesized using sucrose) are 3, 100 min, and 0.05 g, respectively. 相似文献
2.
The Bi2WO6/α-Fe2O3 composite photocatalyst was synthesized by using goethite as a precursor through hydrothermal-calcination method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis reflection spectrometer (DRS), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption measurement (BET). These results indicated that the self-made composite photocatalysts had excellent catalytic performance of degradation of gaseous benzene. When benzene initial concentration at 50 mg/m3, over the α-FeOOH/Bi2WO6 with molar mass of 0.8:1, calcined at 350 °C for 2 h and the pH of precursor solution was 3, the benzene degradation rate reached 71.9% and the mineralization efficiency reached 67.7% after 220 min UV irradiation, respectively. The h+ and O2− generated in the photocatalytic system should be played a pivotal role for the enhanced photodegradation performance of gaseous benzene. 相似文献
3.
F.Z. Janani H. Khiar N. Taoufik A. Elhalil M. Sadiq A.V. Puga S. Mansouri N. Barka 《Materials Today Chemistry》2021
In this research article, ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides phases were prepared by calcination of Zn–Al/Ce–CO3 layered double hydroxides (LDH) precursors, and evaluated for the photocatalytic degradation of methyl orange (MO) as a model textile dye from aqueous solution under UV irradiation. First, Zn–Al–CO3 and a series of Zn–Al/Ce–CO3 with different Ce content (5, 10, 15, 20%) were synthesized through co-precipitation method at Zn/(Al+Ce) molar ratio (r) of 3, then subjected to calcination at 500 °C for 6 h. Samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray analysis and pH point of zero charge. The experimental results of the photodegradation reveal that the photocatalyst developed from Zn–Al–Ce10%-CO3 LDH exhibits the highest photocatalytic activity, with a degradation efficiency of 99.8% after 300 min of irradiation. This performance was mainly ascribed to the presence of difference state of Ce, leading a highest separation efficiency of electrons and holes. The recycling tests suggests a much high photostability and reusability of the photocatalyst. 相似文献
4.
α-Fe2O3, as a promising photocatalyst in environmental aspects, was doped by a nonmetal to enhance the optical and electronic properties. Sulfur-doped hematite was synthesized by microwave irradiation. The samples were investigated by X-ray diffraction and energy dispersive X- ray-scanning electron microscopy. Nanostructure particles have a hexagonal structure that did not change after sulfur incorporation. The optical studies via UV–Visible spectroscopy proved the high absorbance of S/α-Fe2O3under the visible region. Moreover, the band gap of S/α-Fe2O3 was shifted to higher wavelengths. However, nonmetals may exhibit a negative effect and act as recombination centers as the photoactivity of undoped hematite was still higher in the photodegradation of methyl orange as a pollutant. H2O2 as an oxidant was fourfold better than O2, leading to the formation of the active oxygen species. The preparation method plays a crucial role in the shaping of nanostructure particles and its photoactivity. 相似文献
5.
Yuan Wang Xuemei Liu Quyun Chen Tian C. Zhang Like Ouyang Shaojun Yuan 《Materials Today Chemistry》2022
Addressing arsenite pollution in groundwater has drawn great attention. It is attractive to pre-oxidize highly mobile As(III) to relatively low-toxic As(V) with a subsequent adsorption separation process. Herein, BiOI anchoring on γ-Fe2O3 is performed to synthesize BiOI/γ-Fe2O3 core–shell nanoparticles for efficient removal of As(III) via a simultaneous photocatalytic oxidization–adsorption process. The physical and chemical structures of BiOI/γ-Fe2O3 are investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction measurements. The photoluminescence and electron spin resonance (ESR) characterization were employed to ascertain the possible reaction mechanism of visible-light-driven photocatalytic oxidation of As(III). Such BiOI/γ-Fe2O3 delivers a superior As(III) removal capability under visible light irradiation with an arsenic removal efficiency of 99.8% within 180 min, higher than those of BiOCl/γ-Fe2O3 (81.7%) and BiOBr/γ-Fe2O3 (98.9%). The optimal BiOI/γ-Fe2O3 (molar ratio of 2:1) is obtained by rationally adjusting the molar ratio of BiOI to γ-Fe2O3. The as-synthesized BiOI/γ-Fe2O3 performs well in a wide pH range of 2–8. Only coexisting PO43? anions have a significant effect on the As(III) removal. The free radical trapping experiment and ESR results demonstrate that the ?O2? and h+ are the main active substances for the photocatalytic oxidation of As(III) on BiOI/γ-Fe2O3. This work not only gives a novel magnetic core–shell nanoparticle photocatalyst for efficient photocatalytic oxidation and adsorption of As(III) but also offers a new strategy to rationally design BiOX for its related practical applications. 相似文献
6.
《Solid State Sciences》2005,7(1):33-36
Thermal properties of γ-Fe2O3/poly(methyl methacrylate) (PMMA) core/shell particles with an average core size of 4 nm were studied through measurements of thermogravimetry, powder X-ray diffraction and magnetization. The thermal degradation of the PMMA shell in the air was found to occur at temperatures lower by about 60 °C than that of free PMMA. Random scission of the PMMA chains seemed to be catalyzed by the core oxide. The γ-Fe2O3 to α-Fe2O3 structural transformation took place at different temperatures depending upon the shell material. Namely, α-Fe2O3 was the only product for the caprylate-capped γ-Fe2O3 nanoparticles treated at 400 °C, whereas γ-Fe2O3 still remained for the γ-Fe2O3/PMMA composite treated at 500 °C. It is possible that some species containing silicon of the polymerization initiator origin were formed on the surface and prevented interparticle atomic diffusions needed for the γ–α transformation. 相似文献
7.
A simple and a novel chemical approach was used for the growth of α-Fe2O3 nanostructures. Field emission scanning electron microscopy analysis revealed the monodisperse nanoellipsoid morphology of α-Fe2O3 nanostructures. The sizes of the short axis and the long axis of these ellipsoids were in the ranges of 50–60 nm and 40–50 nm, respectively. XRD analysis revealed that the product exhibited α-Fe2O3 phase. Comprehensive TEM and HRTEM analysis revealed that α-Fe2O3 nanoellipsoids are single crystal in nature. The methylene blue decomposition kinetics was studied for different irradiation time. The methylene blue was totally decomposed by increasing the irradiation time up to 220 min. 相似文献
8.
Lijun Yan Yue Cheng Shuai Yuan Xiaojuan Yan Xuefeng Hu Kokyo Oh 《Research on Chemical Intermediates》2013,39(4):1673-1684
Photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4 suspensions was investigated. Adsorption studies revealed photocatalytic degradation occurred mainly on the surface of the TiO2–SiO2–NiFe2O4. The disappearance of the compound followed the zero-order kinetics according to the Langmuir–Hinshelwood model and the rate constant was 0.0035 mg L?1 min?1. The rate constant depended on the amount of photocatalyst, initial pH, and the presence of additional scavengers. ?OH radicals and h+ had important roles in the photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4. 相似文献
9.
A novel core–shell TiO2@ZnIn2S4composite has been synthesized successfully by a simple and flexible hydrothermal route using TiO2as precursors.The as-synthesized samples were characterized by X-ray diffraction,UV–vis diffuse reflectance spectra and transmission electron microscopy.The photocatalytic properties of samples were tested by degradation of aqueous methylene blue(MB)under visible light irradiation.It was found that the as-synthesized TiO2@ZnIn2S4photocatalyst was more effcient than TiO2and ZnIn2S4in the photocatalytic degradation of MB.Moreover,TEM images confrmed the TiO2@ZnIn2S4nanoparticles possessed a well-proportioned core–shell morphology. 相似文献
10.
Sheikholeslami Z. Yousefi Kebria D. Qaderi F. 《Journal of Thermal Analysis and Calorimetry》2019,135(3):1617-1627
Journal of Thermal Analysis and Calorimetry - Among different methods for produced water treatment, photocatalytic process is an alternative and innovative technology that is more used in water... 相似文献
11.
12.
《Journal of Energy Chemistry》2017,26(2):309-314
Core–shell nanoparticles containing plasmonic metals(Ag or Au) have been frequently reported to enhance performance of photo-electrochemical(PEC) devices. However, the stability of these particles in water-splitting conditions is usually not addressed. In this study we demonstrate that Ag@SiO_2 core–shell particles are instable in the acidic conditions in which WO_3-based PEC cells typically operate, Ag in the core being prone to oxidation, even if the SiO_2 shell has a thickness in the order of 10 nm. This is evident from in situ voltammetry studies of several anode composites. Similar to the results of the PEC experiments, the Ag@SiO_2 core–shell particles are instable in slurry-based, Pt/ZnO induced photocatalytic water-splitting. This was evidenced by in situ photodeposition of Ag nanoparticles on the Pt-loaded ZnO catalyst, observed in TEM micrographs obtained after reaction. We explain the instability of Ag@SiO_2 by OH-radical induced oxidation of Ag, yielding dissolved Ag+. Our results imply that a decrease in shell permeability for OH-radicals is necessary to obtain stable, Ag-based plasmonic entities in photo-electrochemical and photocatalytic water splitting. 相似文献
13.
Chen Cuirong Xun Lijiao Zhang Ping Zhang Jinlong Tian Baozhu 《Research on Chemical Intermediates》2019,45(6):3513-3524
Research on Chemical Intermediates - A highly efficient Z-scheme photocatalyst SnS2–Au–CdS was fabricated by photoreduction and thiourea medium deposition methods. It was found that Au... 相似文献
14.
Two metal–organic frameworks, [Co2(L)(H2O)2(4,4′-bipy)]·3CH3CN (1) and [Mn2(L)(1,10-phen)(H2O)]·H2O (2) (H4L = 5-[bis(4-carboxybenzyl)-amino]isophthalic acid; 4,4′-bipy = 4,4′-bipyridine, 1,10-phen = 1,10-phenanthroline), with two different N-donor ligands have been synthesized. The structures of both MOFs were determined using single-crystal X-ray diffraction technique. MOF 1 shows 3D uncommon (4,6,6)-c net with (4.53.62)2(57.66.82)(42.54.66.72.8) topology while in the case of 2, only L4? ligands link Mn(II) ions into a 2D layer structure with chelating 1,10-phen ligand. The results demonstrate that variation in the N-donor ligands plays a pivotal role in deciding the framework of the two MOFs. Both MOFs have been exploited as photocatalyst materials for the degradation of MV. The photocatalysis results indicate that the two MOFs are stable and are prospective candidates for degradation of methyl violet under UV light irradiation. Additionally, 2 displayed superior photocatalytic activity in comparison to 1. The probable photocatalytic activity mechanism for both 1 and 2 against MV has been proposed using density of states (DOS) calculations. 相似文献
15.
Xifang Chen Yue Zhou Hongwen Han Xiaoyu Wang Lei Zhou Zao Yi Zhenjin Fu Xianwen Wu Gongfa Li Liangcai Zeng 《Materials Today Chemistry》2021
Core–shell Fe3O4@C magnetic nanoparticles which are of great interest for research have a widely applied prospect. However, people know little about the optical and magnetic properties of the small-size Fe3O4@C nanoparticles due to the difficulty of uniformly coating small size Fe3O4 nanoparticles. In this paper, the influence of carbon shell coating on the optical and magnetic properties of small size Fe3O4 nanoparticles was presented. Carbon coating can strengthen the absorption intensity in the UV–visible light region through the introduction of oxygen defects on the surface of the nanoparticles by nitric acid treatment. Fe3O4 and Fe3O4@C nanoparticles both display typical superparamagnetic behavior in the high-temperature regime and a blocked state at low temperature from hysteresis loop, zero-field cooled and field cooled curves. Carbon coating reduce the surface uniaxial anisotropy, thus the average blocking temperature <TB> decreases from 59 K of Fe3O4 nanoparticles to 50 K of Fe3O4@C nanoparticles. 相似文献
16.
Changbin Zhang Huayu Wang Fudong Liu Lian Wang Hong He 《Cellulose (London, England)》2013,20(1):127-134
Catalytic hydrolysis of cellulose over solid acid catalysts is one of efficient pathways for the conversion of biomass into fuels and chemicals. High catalytic activity and easy separation from reaction media are two important factors for evaluating the performance of the solid acid catalysts for the cellulose hydrolysis. In this study, we report a core–shell Fe3O4@C-SO3H nanoparticle with a magnetic Fe3O4 core encapsulated in a sulfonated carbon shell, as recyclable catalyst for the hydrolysis of cellulose. The sulfonated carbon shell shows a good activity, presenting 48.6 % cellulose conversion with 52.1 % glucose selectivity under the moderate conditions of 140 °C after 12 h reaction. Importantly, the magnetic Fe3O4 core makes the catalysts easily separated from reaction mixtures by using the externally applied magnetic field. In addition, the Fe3O4@C-SO3H nanoparticle catalyst shows a high stability in the activity and magnetization during recycling tests, suggesting it a promising solid acid catalyst for the hydrolysis of cellulose. 相似文献
17.
α-Fe2O3 nanoflowers: synthesis,characterization, electrochemical sensing and photocatalytic property
R. Suresh K. Giribabu R. Manigandan A. Vijayaraj R. Prabu A. Stephen V. Narayanan 《Journal of the Iranian Chemical Society》2014,11(3):645-652
Nanoflower structured α-Fe2O3 was synthesized by adding hexamine to an aqueous solution of ferrous sulphate followed by drying and annealing at 600 °C for 6 h. X-ray diffraction analysis, Fourier-transformed infrared spectroscopy, Raman and DRS UV–visible absorption spectroscopy showed the formation of α-Fe2O3 with good crystalline nature. Field emission-scanning electron microscopy investigation revealed that the α-Fe2O3 has flower-like morphology, which is composed of nanorods. Cyclic voltammetry and chronoamperometry were used to investigate their electrochemical sensing property towards uric acid (UA). α-Fe2O3 exhibited enhanced sensing behavior with respect to that of bare GCE. Additionally, the α-Fe2O3 nanoflowers exhibit better photocatalytic activity of up to 71.7 % against rhodamine B (RhB) in short time of 60 min under visible light irradiation. It is found that the smaller crystallite size and flower-like morphology play a vital role in allowing an interaction between α-Fe2O3 and UA or RhB dye which enhances both the electrochemical sensing and photocatalytic activity. 相似文献
18.
Synthesis and magnetic properties of the γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles
《Solid State Sciences》2004,6(8):879-885
The synthesis of γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles and their magnetic properties are reported. Specific γ-Fe2O3 nanoparticles capable of initiating atom transfer radical polymerization (ATRP) were prepared by a ligand exchange reaction of ((chloromethyl)phenylethyl)-dimethylchlorosilane and caprylate-capped γ-Fe2O3 nanoparticles of 4 nm in diameter, and the ATRP of methyl methacrylate was carried out subsequently. These nanoparticles were characterized with Fourier transform infrared spectroscopy, transmission electron microscopy and Mössbauer spectroscopy. Low temperature magnetic properties investigated with SQUID magnetometry revealed that the coercivity and the blocking temperature changed slightly owing to surface effects. 相似文献
19.
Wang Yan Han Bingqian Chen Nan Xing Xinxin Deng Dongyang Guan Hongtao Wang Yude 《Research on Chemical Intermediates》2017,43(7):3975-3987
Research on Chemical Intermediates - Beta-manganese dioxide (β-MnO2) microrods were hydrothermally synthesized from ammonium persulfate [(NH)4S2O8] solution using manganese sulfate (MnSO4) as... 相似文献
20.
Ba-Abbad Muneer M. Takriff Mohd S. Benamor Abdelbaki Mohammad Abdul Wahab 《Journal of Sol-Gel Science and Technology》2017,81(3):880-893
Journal of Sol-Gel Science and Technology - Haematite (α-Fe2O3) nanoparticles (NPs) of different sizes and morphologies were prepared from two different iron precursors (iron acetate (A) and... 相似文献