首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ABSTRACT

Nanotechnology is an emerging field of science. The base of nanotechnology is nanoparticles. The size of nanoparticles ranges from 1 to 100?nm. The nanoparticles are classified into different classes such as inorganic nanoparticles, organic nanoparticles, ceramic nanoparticles and carbon base nanoparticles. The inorganic nanoparticles are further classified into metal nanoparticles and metal oxide nanoparticles.similarly carbon base nanoparticles classified into Fullerene, Carbon nanotubes, Graphene, Carbon nanofiber and carbon black Nanoparticles are also classified on the basis of dimension such as one dimension nanoparticles, two-dimension nanoparticles and three-dimension nanoparticles. The nanoparticles are synthesized by using two approaches like top-down approach and bottom-up approach. In this review chemical, physical and green synthesis of nanoparticles is reported. The synthesized nanoparticles are synthesized using different qualitative and quantitative techniques. The Qualitative techniques include Fourier Transform Infrared Spectroscopy (FT-IR), UV-Vis spectrophotometry, Scanning electron microscope (SEM), X.ray diffraction (XRD) and Atomic Force Microscopy (AFM). The Quantitative techniques include Transmission Electron Microscopy (TEM), Annular Dark-Field Imaging (HAADF) and Intracranial pressure (ICP). The nanoparticles have different application which is reported in this review.  相似文献   

2.
表面修饰In纳米微粒的声化学法制备及结构表征   总被引:3,自引:0,他引:3  
Surface modified indium nanoparticles were prepared by a simple and rapid process from bulk indium via ultrasound dispersion. The morphology and structure of synthesized nanoparticles were characterized by TEM, XRD, XPS and FTIR. The results show that the morphology of indium nanoparticles is spherical and the structure of indium nanoparticles is the tetragonal phase. The surface of indium nanoparticles was coated by 2 ethyl hexanoic acid, which could almost hold back oxidation of the indium nanoparticles. In addition, the tribological property of indium nanoparticles as additives in oil was evaluated on a four-ball tester and the results show that indium nanoparticles exhibit good performance in wear.  相似文献   

3.
"?Fluorescence spectra of naked gold nanoparticles, triphenylphosphine stabled gold nanoparticles, and 3-mercaptopropionic acid substituted gold nanoparticles were studied. It was found that fluorescence intensities of gold nanoparticles were highly sensitive to surface molecules. The fluorescence quenching effect of these gold nanoparticles on CdSe nanoparticles was also investigated. This quenching effect was related to the overlap degree between the absorption spectra of gold nanoparticles and the emission spectrum of CdSe nanoparticles, and was surface-dependent as well. "  相似文献   

4.
We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.  相似文献   

5.
We investigate the preparation of nearly monodisperse gold nanoparticles by heat treatment in different conditions. The effects of various solvents, heating temperature, and heating time length on the monodispersity of gold nanoparticles were studied systematically and a general route to generate gold nanoparticles with uniform size was determined. The first step was to prepare gold nanoparticles with less than 3 nm and the following operation was to heat the gold nanoparticles in the present of thiolated solvents where monodispersed gold nanoparticles could be obtained easily. Our approach has enriched synthesis of monodisperse gold nanoparticles, and may provide some valuable experimental data about how the heating process affects the size evolution of gold nanoparticles.  相似文献   

6.
研究了不同粒径的纳米银对镝配合物(乙二胺四乙酸配合物)的光谱学性质影响。当配合物溶液的pH值范围为4.0~6.0时,加入纳米银,可观察到大量的纳米银聚集体形成,而在吸收光谱的长波处出现一个新的吸收峰,随着纳米银浓度的增加,该吸收峰逐渐红移,同时,镝配合物的荧光强度增强。实验结果表明,纳米银粒子对镝配合物的荧光增强效应及荧光增强因子与纳米银粒子的浓度和粒径密切相关。随着纳米银浓度的增加,配合物的荧光强度先增强而后又逐渐降低。小粒径的纳米银对镝配合物的荧光增强因子较小。本文从纳米银粒子的聚集效应、局部电磁场增强效应及光吸收效应等方面探讨了纳米银对表面吸附镝配合物的+荧光增强效应机理。  相似文献   

7.
Silver nanoparticles were assembled on polyvinylpyridine (PVP) derivatized glass slides. Charge transfer between the adsorbed 4-aminothiophenol (PATP) and the immobilized silver nanoparticles was studied by surface-enhanced Raman spectroscopy with 1064 nm excitation, and compared with that of the silver nanoparticles in the colloid. It was demonstrated that the positive charges of the PVP layer could alter the charge distribution in the immobilized nanoparticles and induce the formation of the dipole in the nanoparticles, leading to less charge transfer from the metal to the adsorbed molecules. The coadsorption of chloride ions on the surface of the immobilized silver nanoparticles resulted in the redistribution of the charges in the nanoparticles and, in turn, altered the charge transfer between the adsorbed PATP molecules and the silver nanoparticles.  相似文献   

8.
The paper presents a general overview of the use of nanoparticles to perform sample preparation. In this way the main uses of nanoparticles to carry out solid phase extraction, solid phase microextraction, liquid-liquid extraction and filtration techniques are described for a wide range of nanoparticles including carbon nanoparticles, metallic, silica and molecular imprinted polymer nanoparticles.  相似文献   

9.
Indium-doped CdSe nanoparticles have been synthesized and characterized. Their light absorption, photoluminescence, and structure are similar to undoped CdSe nanoparticles. The greater part of the In associated with the nanoparticles is removed when the nanoparticles undergo ligand exchange by pyridine. As observed with undoped nanoparticles, a ZnS capping layer on the indium-doped nanoparticles results in enhanced nanocrystal photoluminescence. Also, the ZnS cap enhances the retention of In by the nanoparticles. Elemental analysis shows ligand exchange causes CdSe to be lost and capping with ZnS results in the loss of Se. We conclude that In-doped nanoparticles have most of the In on their surface, capping helps the nanoparticles retain the In, and they do not have altered electronic properties.  相似文献   

10.
醇热解法合成超顺磁性氧化铁纳米粒子及其性能   总被引:1,自引:1,他引:0  
赵方圆  张宝林 《应用化学》2012,29(2):186-190
以甲氧基聚乙二醇同时作为溶剂、还原剂及修饰剂,在高温下分解乙酰丙酮铁,制备了纳米Fe3O4粒子,采用透射电子显微镜和X射线衍射分析表征材料的形貌和相组成,傅里叶变换红外光谱仪表征材料的表面修饰物,超导量子干涉仪测试合成的纳米粒子的磁性能,纳米粒度与zeta电势分析仪测试磁性纳米粒子在水中的zeta电势。 结果表明,纳米Fe3O4粒子的大小为(10.1±1.6) nm,粒度均一,单分散性好,在300 K下具有超顺磁性,饱和磁化强度为45 A·m2/kg。 红外结果表明,-COO-共价结合在粒子表面。 zeta电势为-25 mV。 其在水中的稳定性与以三甘醇为反应介质、高温分解法制备的纳米Fe3O4粒子作比较,表现出长时间(60 d以上)的良好分散性。 静电作用及空间位阻效应是其高稳定分散性的原因。  相似文献   

11.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

12.
The aim of the present work was to evaluate if the presence of a polyethylenglycol (PEG) coating around PLA nanoparticles would affect their interaction with biological surfaces, following oral administration to rats. For this purpose, a model antigen, 125I-radiolabeled tetanus toxoid, was encapsulated in PLA and PLA-PEG nanoparticles by a modified water-in-oil-in-water solvent evaporation technique. Firstly, the stability of the nanoparticles in simulated gastrointestinal fluids was evaluated. Results showed an interaction between the nanoparticles and the enzymes of the digestive fluids, this interaction being considerably reduced by the PEG coating around the particles. On the other hand, the PLA forming the nanoparticles was found to be only slightly degraded (9% converted to lactate for PLA nanoparticles and 3% for PLA-PEG nanoparticles) and that the encapsulated tetanus toxoid remained mostly associated to the nanoparticles upon incubation in the digestive fluids for up to 4 h. Finally, the in vivo experiments showed that, after oral administration to rats, the levels of encapsulated radioactive antigen in the blood stream and lymphatics were higher for PLA-PEG nanoparticles than for PLA nanoparticles. In conclusion, the PLA-PEG nanoparticles have a promising future as protein delivery systems for oral administration.  相似文献   

13.
A novel method to produce solution-phase triangular silver nanoparticles is presented. Ag nanoparticles are prepared by nanosphere lithography and are subsequently released into solution. The resulting nanoparticles are asymmetrically functionalized to produce either single isolated nanoparticles or dimer pairs. The structural and optical properties of Ag nanoparticles have been characterized. Mie theory and the Discrete Dipole Approximation method (DDA) have been used to model and interpret the optical properties of the released Ag nanoparticles.  相似文献   

14.
Copper nanoparticles with different structural properties and effective biological effects may be fabricated using new green protocols. The control over particle size and in turn size-dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for the synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. Biological methods involve the use of plant extracts, bacteria, and fungi. Commendable work has been done regarding the synthesis and stability of copper nanoparticles. There is a need to summarize the behavior of copper nanoparticles in different media under various conditions. Here, a complete list of the literature on the synthesis of copper nanoparticles, their properties, stabilizing agents, factors affecting the morphology, and their applications is presented. The importance of copper nanoparticles compared to other metal nanoparticles are due to high conductivity. Methods for the synthesis of copper nanoparticles, including green protocols using plants and micro-organisms compared chemical methods, have also been reviewed.  相似文献   

15.
Polysaccharide coated PLA nanoparticles bearing aldehyde groups were prepared by dialysis of DMSO solution of cholesterol hydrophobic-modified dextran polyaldehyde and PLA against water.The average diameter of the nanoparticles was about 160 nm,and the size distribution was nearly homogenous.The nanoparticles were functionalized simultaneously with CD71 and EGFR antibody through the Schiff's base reaction,and then radiolabeled with ~(99m)Tc.After perfused the radiolabeled nanoparticles into tumor-bearing...  相似文献   

16.
Dominantly tetrahedral shaped poly(vinylpyrrolidone)-platinum (PVP-Pt) nanoparticles are shown to catalyze the Suzuki reaction between phenylboronic acid and iodobenzene but are not as active as the spherical palladium nanoparticles studied previously. The dominantly tetrahedral PVP-Pt nanoparticles (55 +/- 4% regular tetrahedral, 22 +/- 2% distorted tetrahedral, and 23 +/- 2% spherical nanoparticles) are synthesized by using the hydrogen reduction method. The transmission electron microscopy (TEM) results show that a transformation of shape from tetrahedral to spherical Pt nanoparticles takes place 3 h into the first cycle of the reaction. After the first cycle, the spherical nanoparticles have a similar size distribution to that of the tetrahedral nanoparticles before the reaction and the observed shape distribution is 18 +/-6% regular tetrahedral, 28 +/- 5% distorted tetrahedral, and 54 +/- 5% spherical nanoparticles. After the second cycle of the Suzuki reaction, the shape distribution is 13 +/- 5% regular tetrahedral, 24 +/- 5% distorted tetrahedral, and 63 +/- 7% spherical nanoparticles. After the second cycle, the transformed spherical nanoparticles continue to grow, and this could be due to the strong capping action of the higher molecular weight PVP (M(w) = 360 000), which makes the nanoparticles more resistant to aggregation and precipitation, unlike the Pd nanoparticles capped with the lower molecular weight PVP (M(w) = 40 000) used previously. The transformation in shape also occurs when the nanoparticles are refluxed in the presence of the solvent, sodium acetate, and iodobenzene and results in spherical nanoparticles with a similar size distribution to that of the tetrahedral nanoparticles before any perturbations. However, in the presence of phenylboronic acid, the regular tetrahedral nanoparticles remain dominant (51 +/- 6%) and maintain their size. These results support our previous studies in which we proposed that phenylboronic acid binds to the nanoparticle surface and thus acts as a capping agent for the particle and reacts with the iodobenzene. Recycling the nanoparticles results in a drastic reduction of the catalytic activity, and this must be due to the transformation of shape from the dominantly tetrahedral to the larger dominantly spherical nanoparticles. This also supports results in the literature that show that spherical platinum nanoparticles do not catalyze this reaction.  相似文献   

17.
We report the synthesis of atypical nanoparticles in donut shape with or without additional spherical nanoparticles attached on them by using the donut-like nanostructure formed in a thin film of triblock copolymers. In a high-humidity condition, a spin-coated film of triblock copolymer had donut-like holes consisting of the periphery and the center. By selective coordination of precursors of nanoparticles to the periphery of the holes, donut-like oxide nanoparticles were synthesized by oxygen plasma treatment on the film. Moreover, we were able to attach spherical nanoparticles on the donut-like nanoparticles by incorporating the other type of precursors to the center of the holes. Thus, beyond the synthesis of typical spherical nanoparticles, the results here extend potentials of the block copolymer approach to control the shape and complexity of nanoparticles.  相似文献   

18.
Dendrimer-protected TiO2 nanoparticles were synthesized by hydrolysis of TiCl4 in solutions of poly(amido amine) dendrimers (64 terminals) under cooling. The morphology of dendrimers surrounding TiO2 nanoparticles depended on the terminal groups (amine, carboxyl, hydroxy) of dendrimers. The size (4.4-6.7 nm) of dendrimer-protected TiO2 nanoparticles was slightly smaller than that (7.5 nm) of bare TiO2 nanoparticles. The photodegradation of 2,4-dichlorophenoxyacetic acid revealed that dendrimer-protected TiO2 nanoparticles are more active as a photocatalyst than TiO2 nanoparticles without protectors. This suggests that the dendrimer acts as a reservoir of photoreacting reagents besides acting as a protector of nanoparticles.  相似文献   

19.
We produced, for the first time, monodisperse NiH(x) nanoparticles with particle diameters of 7.0 nm and investigated their magnetic properties. We also produced monodisperse Ni nanoparticles with nearly the same particle diameters as those of NiH(x) nanoparticles as a comparison. The magnetic properties of NiH(x) nanoparticles were quite different from those of Ni nanoparticles. We observed two compositional phases in NiH(x) nanoparticles, similar to bulk material: one is the nearly pure Ni phase with the blocking temperature (T(B)) of 11 K and the other is the hydride phase. We observed T(B) of 40 K in Ni nanoparticles.  相似文献   

20.
The understanding of how the formation of metal nanoparticles in aqueous solutions is influenced by the presence of presynthesized nanoparticles is important for precise control over size, shape, and composition of nanoparticles. New insights into the catalytic mechanism of Pt nanoparticles are gained by studying the formation of gold nanoparticles from the reduction of AuCl(4)(-) in aqueous solution in the presence of presynthesized Pt nanoparticles as a model system. The measurement of changes of the surface plasmon resonance band of gold nanoparticles, along with TEM analysis of particle size and morphology, provided an important means for assessing the reaction kinetics. The reductive mediation of Pt-H species on the Pt nanocrystal surface is believed to play an important role in the Pt-catalyzed formation of gold nanoparticles. This important physical insight is evidenced by comparison of the rates of the Pt-catalyzed formation of gold nanoparticles in the presence and in the absence of hydrogen (H(2)), which adsorb dissociatively on a Pt nanocrystal surface forming Pt-H species. Pt-H effectively mediates the reduction of AuCl(4)(-) toward the formation of gold nanoparticles. Implications of the findings to the controllability over size, composition, and morphology of metal nanoparticles in the aqueous synthesis environment are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号