首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial ear is being used to evaluate the acoustic response and the sound quality of the mobile telephony devices, which simulates the practical listening condition of the outer ears. In this paper, a method to estimate the coupled acoustic response of the device with an artificial ear is studied to be effectively used in the design. To this end, an equivalent circuit model of the total receiver system including all accessory elements is established. Acoustic impedance of artificial ear, which is essential in the equivalent model, is directly measured by using three microphones arranged in tandem on the duct wall connected to the artificial ear. Input impedances of two artificial ears, Type 3.3 and 3.4, which are currently employed as the standard devices, are measured. The measured data is incorporated into the model to predict the acoustic response. To validate the proposed model using the measured impedance, the measured acoustic responses of two simulation systems including mobile phone and artificial ear are compared with the predicted ones. A reasonably good agreement between measurement and prediction is observed, and their difference is less than 4.5 dB at the narrow communication band for a mobile phone (f < 3.4 kHz). It is also found that the input impedance of Type 3.3 ear is more robust to the change of measuring condition than Type 3.4 ear.  相似文献   

2.
Structural, electrical and morphological properties of electrical conducting nanoporous carbon structures, prepared at different pyrolysis temperatures by sol–gel method, were investigated. The effect of the measurement temperature on the electrical properties of the obtained sample pyrolysed at 675 °C was studied. The imaginary and real parts of the sample impedance versus frequency, in the range of 40 Hz–100 MHz, are investigated. The Nyquist diagrams were used to identify an equivalent circuit and the fundamental parameters of the circuit are determined at different temperatures with the aim to study the contributions of the grains and boundary grains to the conductivity.  相似文献   

3.
We present a novel electrostatic discharge (ESD) protection circuit for GaAs radio frequency (RF) integrated circuits (ICs), which are targeted for 10 Gb/s fiber-optic communication applications. The robustness, parasitic impedance, and loading effect of the new ESD protection circuit are studied and compared with the conventional diode-based ESD protection technique. Two versions of this type of ESD protection circuit were fabricated with a 60-GHz InGaP heterojunction bipolar transistor (HBT) technology. These two circuits can withstand, respectively, 2700 and 5000 V human body model (HBM) ESD stress and provide a similar level of ESD protection to RF ICs. The corresponding impedances of the off state are represented by an equivalent shunt capacitance and shunt resistance of 0.22 pF and 500 Ω, and 0.5 pF and 250 Ω, at 10 GHz. This ESD protection circuit can protect the 10 Gb/s RF ICs against much higher level ESD stress than conventional diode-based ESD protection circuits even with smaller size.  相似文献   

4.
To assess the maximum sound levels that may be experienced by young people in Canada from modern digital audio players, this study measured nine recent models of players and 20 earphones. Measurement methodology followed European standard BS EN 50332. Playback levels ranged from 101 to 107 dBA at maximum volume level. Estimated listener sound levels could vary from 79 to 125 dBA due to the following factors: (i) earphone seal against the ear, (ii) player output voltage, (iii) earphone sensitivity, and (iv) recorded music levels. There was a greater potential for high sound levels if intra-concha "earbud" earphones were used due to the effect of earphone seal. Simpler measurement techniques were explored as field test methods; the best results were obtained by sealing the microphone of a sound level meter to the earphone using a cupped hand and correcting for the free field response of the ear. Measurement of noise levels 0.25 m from the earphone showed that a bystander is unlikely to accurately judge listener sound levels.  相似文献   

5.
In this paper, a methodology is proposed for designing porous fibrous material with optimal sound absorption under set frequency bands. The material is assumed to have a rigid frame and a hexagonal arrangement of fibers, and the analytical model derived by Johnson, Champoux and Allard (“JCA model”) is used to investigate the influences of the micro-structural parameters (fiber radius r and gap w) on sound absorption performance, and the macro-acoustic parameters used in JCA model is determined via finite element analysis for the hexagonal micro-structure. Moreover, a mathematical model is constructed to obtain the optimized micro-structure design, with fiber radius and gap as design parameters and average absorption performance of the porous fibrous material under set frequency band as target. Utilizing the constructed optimization model, the microstructure parameters are derived with optimal sound absorption under low frequency (20  f < 500 Hz), medium frequency (500  f < 2000 Hz) and high frequency (2000  f < 15,000 Hz), respectively. On top of that, for a given thickness of porous fibrous material layer, the analytical relationship between fiber radius and optimal porosity under set frequency bands is constructed.  相似文献   

6.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2012,123(18):1627-1631
In this study, the oscillation conditions for series photodetector frequency circuit system were proposed and verified experimentally. The effect of the capacitance Cp and oscillator phase θ on the oscillation ability of series photodetector frequency circuit system was investigated. It revealed that series photodetector frequency circuit system possessed excellent oscillation ability, but the oscillation ability decreased with increasing oscillator phase or decreasing capacitance Cp, even resulted in a cease-to oscillate zone. Moreover, this study elucidated the frequency response and optical detection of series photodetector frequency circuit system matched with PMMA for fluorescence dye concentration. In accordance with Hex fluorescence dye concentrations and frequency responses, the detection limit of fluorescence dye concentration 3.3 pmol/L can be measured by 100 MHz sensor system matched with PMMA. The results also showed that the frequency shift of 100 MHz sensor system matched with PMMA was linearly related to the logarithm of fluorescence dye concentration from 3.3 pmol/L to 33.3 μmol/L.  相似文献   

7.
Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole–Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.  相似文献   

8.
The cross-sectional discontinuity between a probe eartip and an ear canal (EC) causes the latter to “acoustically” appear longer than it is “geometrically”. In this study, the idea of whether modifications within the eartip geometry can reduce this length overestimation was investigated: (i) upon extending one of the connecting (sound or microphone) tubes and (ii) upon sinking the entire probe tube assembly into the eartip. Finite element models of the eartip modifications were created, and validated by measurements on rigid EC models using eartip prototypes. Whereas extending the sound tube yielded no considerable effect, extending the microphone tube by 2 mm counterbalanced the discontinuity effect for a 12 mm diameter EC model. Alternatively, sinking the tube assembly 2 mm into the eartip allowed for radially symmetric sound radiation at the discontinuity, which was then described by a series inductance in the lumped-element equivalent circuit. Whereas this elaborate modification with the recess is more appropriate for calibration purposes (where the exact geometry of a calibration cavity or EC simulator is known), a microphone extension is more practical when a rough length estimate of large-diameter ECs is required. In most practical applications, discontinuity effects can be accounted for by using modified eartips.  相似文献   

9.
Acoustic emissions were characterized for fourteen, 8 × 8 arrays of axisymmetric supersonic jets experimentally. The nozzle diameters ranged from 3.2 mm (1/8 in.) to 6.4 mm (1/4 in.) and the hole-to-hole spacing (S) over hole diameter (d), or the S/d ratios ranged from 1.44 to 3. The arrays were tested at several net pressure ratios ranging from 2 to 24. It was found that up to a critical net pressure ratio, the arrays radiated ultrasonic frequencies. Beyond this critical net pressure ratio the characteristic frequency decreased to lie within the audible range. Frequency response plots of the sound pressure indicate a broadband frequency peak generated by the turbulent mixing noise of the jet. At lower net pressure ratio (NPR) values, this broadband peak is similar to a single jet within the jet array. However, as the NPR continues to increase this frequency peak shifts to lower values which are similar to a single jet with an equivalent exit area of the entire array. Dimensional analysis revealed that at a critical net pressure ratio a dramatic reduction in the characteristic Strouhal number occurred. A small increase in the characteristic acoustic pressure was also observed at net pressure ratios below the critical net pressure ratio and a larger increase was observed at higher net pressure ratios. The critical net pressure ratio appeared to be a linear function of S/d for the nozzle arrays. A linear curve fit was applied to the measured critical net pressure ratio and this was compared to a theoretical model prediction. The experimental results revealed that the critical net pressure ratio is well predicted by the models.  相似文献   

10.
A reflection non-contact ultrasonic microscope system working both in amplitude and phase difference modes at 2 MHz has been developed using an air-coupled concave transducer made of piezoelectric polymer films of poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)]. The transducer is composed of three 95 μm-thick P(VDF/TrFE) films stacked together, each of which is activated electrically in parallel by a driving source. The transducer has a wide aperture angle of 140° and a focal length of 10 mm. The measured two-way transducer insertion loss is 80 dB at 1.83 MHz. Despite 20 dB higher insertion loss than that estimated from Mason’s equivalent circuit, we have obtained clear amplitude acoustic images of a coin with transverse resolution of 150 μm, and clear phase difference acoustic images of the rough surface of a paper currency bill with depth resolution of sub-micrometer. Using two planar transducers of P(VDF/TrFE), we have also successfully measured in through-transmission mode the sound velocity and absorption of a 3 mm-thick silicone-rubber plate. The present study proves that, owing to its low acoustic impedance and flexibility, P(VDF/TrFE) piezoelectric film is very useful for high frequency acoustic imaging in air in the MHz range.  相似文献   

11.
Experiments on resonator micro-optic gyro (RMOG) with a digital proportional integral (PI) feedback scheme are performed. In this experimental setup, the key rotation sensing element is a polarization maintaining silica waveguide ring resonator (WRR) with a ring length of 7.9 cm and a diameter of 2.5 cm. A good linearity of 0.0015% over a wide range of ± 2 × 104 °/s can be achieved for the RMOG theoretically. The optimal digital PI feedback scheme is adopted in the frequency servo loop to reduce the reciprocal frequency fluctuations due to the WRR resonance frequency and laser frequency drifts. Residual equivalent input fluctuation can be reduced as low as 0.03 °/s/√Hz based on the optimal digital PI feedback scheme, which is close to the shot noise limited spectral density 0.02 °/s/√Hz of the RMOG with the input optical power of 0.2 mW. Relationship between RMOG output signal and angular rate is obtained from ± 0.1 °/s to ± 5 °/s. The standard deviation of the residuals between RMOG output results and linear fit curve is 0.066 °/s. For an integration of the processing circuit, all the processing circuit is implemented by a field programmable gate array (FPGA) instead of instruments. The output of this digitalized RMOG is obtained over a range of ± 550 °/s. The linearity of this digitalized RMOG is 0.0169%.  相似文献   

12.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

13.
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1–7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6 mm stainless steel plate). In contrast, minimal sound pressure transmission (∼10–20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.  相似文献   

14.
In this paper, we propose a more general forecasting method to predict the sound absorption coefficients at six central frequencies and the average sound absorption coefficient of a sandwich structure nonwoven absorber. The kernel assumption of the proposed method is that the acoustics property of sandwich structure nonwoven absorber is determined by some easily measured structural parameters, such as thickness, area density, porosity, and pore size of each layer, if the type of the fiber used in nonwoven is given. By holding this assumption in mind, we will use general regression neural network (GRNN) as a prediction model to bridge the gap between the measured structural parameters of each absorber and its sound absorption coefficient. In experiment section, one hundred sandwich structure nonwoven absorbers are particularly designed with ten different types of meltblown polypropylene nonwoven materials and four types of hydroentangled E-glass fiber nonwoven materials firstly. Secondly, four structural parameters, i.e., thickness, area density, porosity, and pore size of each layer are instrumentally measured, which will be used as the inputs of GRNN. Thirdly, the sound absorption coefficients of each absorber are measured with SW477 impedance tube. The sound absorption coefficient at 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz and their average value are used as the outputs of GRNN. Finally, the prediction framework will be carried out after the desired training set selection and spread parameter optimization of GRNN. The prediction results of 20 test samples show the prediction method proposed in this paper is reliable and efficient.  相似文献   

15.
In this work we investigated the photoluminescence response in the frequency domain modulated infrared radiometry signal observed of ZnTe:Cr bulk crystal. In mid-infrared range, three characteristic phenomena are observed in ZnTe:Cr crystal: absorption and emission of IR photons (2–3 μm) and the free carrier absorption. This implies that the modulated infrared radiometry signal yields information about the effective infrared absorption coefficient (photothermal response) as well about the recombination lifetime of carriers related with the infrared photoluminescence emission. In this paper, the frequency equivalence of the two-term independent exponential photoluminescence decay model in order to explain the measured frequency characteristics is proposed. The measured recombination lifetimes (2.3 μs for two exponential decay model and 1.5 μs for one exponential decay model) are in good agreement with the values given by other authors (about 2.5–3.0 μs). Moreover, we found that the photothermal response is uncorrelated with the photoluminescence one, in contrast, to the photocarrier response.  相似文献   

16.
The sound propagation properties of two air-filled granular materials: large sifted pea gravel and 10 mm diameter glass spheres have been measured in an impedance tube. The experimental method was essentially the same as reported earlier [Swenson et al. Low-frequency sound wave parameter measurement in gravels. Appl Acoust 2010; 71: 45–51] for two other kinds of gravel: crushed limestone and undifferentiated pea gravel. Additional sampling and processing steps were applied to the microphone signals such that instead of tones, band-limited random noise was used as the input signal, and spectral domain complex pressures are now offered as input to the estimation algorithm. The estimation process extracts the best-fit attenuation coefficient, phase velocity, and characteristic impedance for the material over the signal frequencies, all with better precision than we previously obtained. Quadratic approximations for the acoustical parameters are given over the frequency range 25–160 Hz. The media are both slightly attenuating and dispersive, having attenuation coefficients within 0.13–0.34 Np/m, phase velocities smaller than those in air (180–240 m/s), and characteristic impedance approximately 3–5 times that for air. Pea gravel was more attenuating, and had slightly higher characteristic impedance, but lower phase velocities than the glass spheres.  相似文献   

17.
In the present work a simple model for calculation of the energy response of radiographic films was introduced. According to the model the energy response of a radiographic film is directly proportional to the optical density on the film and thus to the number of developed grains in the emulsion. The model was simulated by Monte Carlo method using MCNP code and the relative energy response of Kodak type 2 film under a few filters of A.E.R.E./R.P.S. film badge was calculated. The simulated responses were in agreement with the experimental data in the region of 30 keV–1.5 MeV. In the next stage a multi-element filter was simulated to optimize the energy response in the above energies. The energy response varied by 25% between 40 keV and 1.5 MeV. So the dose received by the film is equivalent to the desired true dose and there would be no need to the correction factors.  相似文献   

18.
We investigated micron size, high-performance, and solenoid-type radio-frequency surface-mounted device (SMD) chip inductors with a low-loss Al2O3 core for a GHz drive microwave circuit application. Copper coils with a diameter of 27 μm were used and the chip inductors fabricated in this study are 0.86 × 0.46 × 0.45 mm3. The high-frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of the developed inductors were measured using a RF impedance/material analyzer (HP4291B with HP16193A test fixture). The developed inductors have a self-resonant frequency of 3.7–5.2 GHz and exhibit L of 15–34 nH. The inductors have Q of 38–49 over the frequency ranges of 900 MHz–1.7 GHz. The calculated data obtained from the equivalent circuit and the derived equation of Q described the high-frequency data of L, Q, and Z of the inductors developed quite well.  相似文献   

19.
A metamaterial absorber (MA) based sensor is designed and analysed for various important applications including pressure, temperature, density, and humidity sensing. Material parameters, as well as equivalent circuit model have been extracted and explained. After obtaining a perfect absorption (PA) at around 6.46 GHz and 7.68 GHz, surface current distributions at resonance points have been explained. Since bandwidth and applicability to different sensor applications are important for metamaterial sensor applications, we have realized distinctive sensor demonstrations for pressure, temperature, moisture content and density and the obtained results have been compared with the current literature. The proposed structure uses the changes on the overall system resonance frequency which is caused by the sensor layer’s dielectric constant that varies depending on the electromagnetic behaviour of the sample placed in. This model can be adapted to be used in sensor applications including industrial, medical and agricultural products.  相似文献   

20.
A new organic–inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz–5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号