首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CdS modified TiO2/Fe3O4 photocatalysts were prepared by sol–gel and immersion methods. The morphological, structural and optical properties of as-prepared samples were characterized by X-ray diffraction (XRD), UV–Vis absorption spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The TEM observation showed that the surface of magnetite particles (Fe3O4) were coated by CdS–TiO2 layer as loose clusters, and average diameter of composites particles was about 250 nm. UV–Vis absorption spectra indicated that CdS–TiO2/Fe3O4 composites had pronounced red-shift compared with that of TiO2/Fe3O4. The CdS–TiO2/Fe3O4 composites exhibit higher photocatalytic activity than pure TiO2 and TiO2/Fe3O4 for the degradation of Reactive Brilliant Red X-3B dye (X-3B) aqueous solution under simulated sunlight, and the optimum content of CdS is 1.0 % (mol ratio of CdS to TiO2). In addition, a gradual loss of photocatalytic activity can be observed in reusability test of CdS–TiO2/Fe3O4 composites, and degradation of X-3B reached still to 78.9 % after five runs.  相似文献   

2.
Well defined, pure hexagonal-phased NaYF(4):Yb(3+),Er(3+)/Tm(3+) microtubes and microrods were first prepared by a facile and mass production molten salt method without using any surfactant, which offers a new alternative in synthesizing such materials and opens the possibility to meet the increasing commercial demand.  相似文献   

3.
A magnetically separable Cu2O/Fe3O4 magnetic composite photocatalyst was synthesized in large quantities by a fast and simple route. The as-prepared photocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the Cu2O/Fe3O4 composite photocatalysts were tested using methyl orange (MO) degradation reaction under visible light irradiation (100 mW/cm2) and demonstrated to have a high photocatalytic efficiency toward the decomposition of MO under visible light irradiation with good recyclability.  相似文献   

4.
《中国化学快报》2020,31(10):2705-2711
In this study, α-Bi2O3/g-C3N4 nanocomposite with direct Z-scheme was successfully prepared through calcination of BiOCOOH/g-C3N4 precursor at different temperature. Meanwhile, the effect of calcination temperature on the physicochemical properties of α-Bi2O3/g-C3N4 was studied. All results confirmed that calcination temperature greatly influences structural, morphology, surface states, photoelectrochemical property and photocatalytic (PC) performance of α-Bi2O3/g-C3N4 composite. Furthermore, the α-Bi2O3/g-C3N4 composite was applied as photocatalyst to degrade amido black 10B dye under visible light irradiation. It was found that the composite synthesized at 400 °C exhibited the highest PC performance due to the intense visible light absorbance and high separation efficiency of electron and hole pairs. Besides, the possible PC mechanism was proposed that the photo-generated charge carrier migration in α-Bi2O3/g-C3N4 photocatalyst followed a Z-scheme structure. Finally, the stability test also manifest that the α-Bi2O3/g-C3N4 composite photocatalyst has good stability and reusability, which was a promising candidate for wastewater treatment.  相似文献   

5.
This paper reports on the preparation of SO4 2?/Fe2O3–TiO2–Nd2O3 (SFTN) by combustion method. The effect of Nd content on catalytic activity was investigated. The prepared materials doped and undoped by Nd were compared by means of TG-DTG, XRD, FT-IR, NH3-TPD and TEM techniques. Results indicated that the introduction of Nd improved the catalytic activities of the catalysts. Catalytic activity of SFTN was the highest with 98.3 % menthol conversion when Nd content was at 2 wt%. The introduction of Nd stabilized the coordination bond between the sulfate irons and the metallic oxides, helping in the formation of solid acid sites, enhancing the dispersion of catalyst particles, and inhibiting the growth of catalyst particles under heating.  相似文献   

6.
Russian Journal of Applied Chemistry - Poly(urethane-imide)/Fe3O4@SiO2–NH2 nanocomposites were synthesized by the reaction of 4,4′-diphenylmethane diisocyanate (MDI), polypropylene...  相似文献   

7.
It has been found that the photocatalytic activity of TiO2 toward the decomposition of gaseous benzene can be greatly enhanced by loading TiO2 on the surface of SrAl2O4: Eu2+, Dy3+ using sol–gel technology. The prepared photocatalyst was characterized by BET, XRD, and XPS analyses. XRD results reveal that the peaks of titania in either rutile or anatase form are not detected by XRD in the 2θ region from 20° to 50°. The binding energy values of Ti 2p of pure TiO2 are 458.90 and 464.60 eV, while for TiO2/SrAl2O4: Eu2+, Dy3+, the binding energy values of Ti 2p are 458.50 and 464.20 eV. The results indicate that the optimum loading of TiO2 is 1 wt% and TiO2/SrAl2O4: Eu2+, Dy3+ (1 wt%) demonstrates 1.4 times the photocatalytic activity of that of pure TiO2, but the underlying mechanism of SrAl2O4: Eu2+, Dy3+ in the photocatalytic reaction remains to be unraveled.  相似文献   

8.
Nanoflower structured α-Fe2O3 was synthesized by adding hexamine to an aqueous solution of ferrous sulphate followed by drying and annealing at 600 °C for 6 h. X-ray diffraction analysis, Fourier-transformed infrared spectroscopy, Raman and DRS UV–visible absorption spectroscopy showed the formation of α-Fe2O3 with good crystalline nature. Field emission-scanning electron microscopy investigation revealed that the α-Fe2O3 has flower-like morphology, which is composed of nanorods. Cyclic voltammetry and chronoamperometry were used to investigate their electrochemical sensing property towards uric acid (UA). α-Fe2O3 exhibited enhanced sensing behavior with respect to that of bare GCE. Additionally, the α-Fe2O3 nanoflowers exhibit better photocatalytic activity of up to 71.7 % against rhodamine B (RhB) in short time of 60 min under visible light irradiation. It is found that the smaller crystallite size and flower-like morphology play a vital role in allowing an interaction between α-Fe2O3 and UA or RhB dye which enhances both the electrochemical sensing and photocatalytic activity.  相似文献   

9.
10.
Three types of silica gel supported titanium dioxide particles immobilizing Zn(II) carboxylphenyl porphyrins appending p-CH3, p-H and p-Cl phenyl substituents (designated as ZnMP–TiO2–SiO2, ZnPP–TiO2–SiO2 and ZnCP–TiO2–SiO2, respectively) have been synthesized and characterized using SEM, XRD, IR, AFS, DRS, UV–Vis, XPS and TG. The photodegradation of α-terpinene in aqueous suspension was used to determine the photocatalytic activity of TiO2–SiO2 samples which had been impregnated with Zn(II) porphyrins, as sensitizers. The experimental results confirmed that the photocatalytic activitys of these composites are much higher than those of the nonmodified TiO2–SiO2 under visible light irradiation and follow the order of ZnMP–TiO2–SiO2 > ZnPP–TiO2–SiO2 > ZnCP–TiO2–SiO2.  相似文献   

11.
A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.  相似文献   

12.
Bifunctional magneto-optical nanocomposites with Fe3O4 nanoparticles as a core and erbium and lithium codoped gadolinium (Gd2O3:Er3+, Li+) as the shell were synthesized successfully using a simple urea homogeneous precipitation method. The fabricated Fe3O4@Gd2O3:Er3+, Li+ particles were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy and quantum design vibrating sample magnetometry. The upconversion emission intensity was enhanced significantly comparing to that without Li+ ions. These bifunctional composites are expected to be potentially applied for drug delivery, cell separation and bioimaging.  相似文献   

13.
《Comptes Rendus Chimie》2015,18(12):1297-1306
β-Azidoalcohols, β-cyanohydrins, and β-acetoxy alcohols have been synthesized in the presence of a Fe3O4@SiO2/bipyridinium nanocomposite (Fe3O4@SiO2/BNC) as a novel magnetic and recyclable phase-transfer catalyst (PTC) in water. The catalyst was characterized with FT–IR, SEM, XRD, VSM, and TGA. This methodology offers several advantages, including easy work-up procedure, excellent regioselectivity, high yields, short reaction times, recyclable catalyst, easy separation of the catalyst through an external magnet and eco-friendly procedure.  相似文献   

14.
Manganese zinc ferrous fumarato–hydrazinate precursor, Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 was synthesized for the first time and characterized by chemical analysis, infrared spectral studies, and thermal analysis. Infrared studies show band at 977 cm?1 indicating bidentate bridging nature of the hydrazine in the complex. Thermogravimetric (TG) studies show two steps dehydrazination followed by two steps total decarboxylation. The precursor on touching with burning splinter undergoes self propagating autocatalytic decomposition yielding ultrafine Mn0.6Zn0.4Fe2O4. XRD studies confirms single phase formation as well as nanosize nature of “as prepared” Mn0.6Zn0.4Fe2O4. The saturation magnetization of the “as prepared” Mn0.6Zn0.4Fe2O4 was found to be 31.46 emu gm?1, which is lower than the reported, confirms the ultrafine nature of the oxide.  相似文献   

15.
16.
Mg1−xZnxAl2O4 spinel nanoparticles with x = 0, 0.05, 0.10, 0.15 and 0.20 were prepared via the chemical coprecipitation method. The obtained samples were characterised by thermal gravimetric and differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflection spectrum, transmission electron microscopy and 27Al MAS-NMR spectroscopy. Mg1−xZnxAl2O4 spinel powders with the mean crystallite size of around 11 nm–14 nm were obtained. The crystallinity of the MgAl2O4 samples increases with the increase in the calcination temperature. At the same calcination temperature, higher amount of Zn2+ substitution leads to the higher level of crystallinity, but has no apparent influence on the mean crystallite size of the samples. The photocatalytic activity of the obtained Mg1−xZnxAl2O4 spinel nanoparticles was evaluated by monitoring the degradation of methylene blue under UV light. The degradation rates of methylene blue using the MgAl2O4 nanoparticles prepared at the calcination temperatures of 700 °C and 800 °C are much higher than those prepared at 900 °C and 1000 °C. The photocatalytic activities of the spinel powders with lower level of Zn2+ substitution such as Mg0.95Zn0.05Al2O4 are inferior to that of MgAl2O4. Results of 27Al MAS-NMR spectroscopy analysis and the first principle total density of state calculations reveal that this is probably due to the substitutions of Zn2+ decreasing the degree of Al3+ ions inversion over the sites of tetrahedral and octahedral coordination. With the increase in the amounts of Zn2+ substitution, the effects of Zn2+ additions on the photocatalytic activities become gradually predominant, leading to the increases in the degradation rates. The methylene blue degraded by 99% within 4 h using the Mg0.8Zn0.2Al2O4 spinel powders.  相似文献   

17.
In this study, a new magnetic hybrid nanomaterials Fe3O4@SiO2@PPh3@Cr2O72− is introduced. First, the magnetic Fe3O4 nanoparticles have been synthesized by co-precipitation method. Then, tetraethyl orthosilicate has been used for production of core–shell nanoparticles Fe3O4@SiO2. The core–shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was synthesized using (3-chloropropyl) trimethoxysilane and triphenylphosphine and the cationic part was prepared for immobilization of anionic part of the Cr (VI) catalysts including Cr2O72−. After immobilization of the catalyst, its structure was detected by using Fourier transform infrared (FT-IR), solid state UV–Vis, elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD) and the particle size and morphology were elaborated by scanning electron microscope (SEM) and XRD. Magnetism properties were quantified by vibrating sample magnetometer (VSM).  相似文献   

18.
19.
20.
A facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号