首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We extend a constrained version of implicit regularization (CIR) beyond one-loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation theory for any Feynman diagram, while the Ward–Slavnov–Taylor identities are controlled by finite surface terms. To illustrate, we apply CIR to massless abelian gauge field theories (scalar and spinorial QED) to two-loop order and calculate the two-loop beta-function of spinorial QED. PACS  11.10.Gh; 11.15.Bt; 11.15.-q  相似文献   

2.
It is shown that chiral anomalies can be removed in abelian gauge theories. After a discussion of the two dimensional case where exact solutions are available we study the four dimensional theory. We use perturbation theory, i. e. analyse the triangle Feynman integrals, and determine the general subtraction structure of the gauge current. Then we show that gauges exist for which current conservation holds and the theory is gauge invariant. As far as the generating functional is concerned the anomaly is employed first as gauge fixing condition. After rewriting the interaction in a gauge invariant form the gauge fixing condition can be imposed as usual. In our approach the integration over the gauge group remains trivial.  相似文献   

3.
At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.  相似文献   

4.
5.
We consider the \({{\mathcal {O}}(\alpha \alpha _s)}\,\)corrections to single on-shell gauge boson production at hadron colliders. We concentrate on the contribution of all the subprocesses where the gauge boson is accompanied by the emission of two additional real partons and we evaluate the corresponding total cross sections. The latter are divergent quantities, because of soft and collinear emissions, and are expressed as Laurent series in the dimensional regularization parameter. The total cross sections are evaluated by means of reverse unitarity, i.e. expressing the phase-space integrals in terms of two-loop forward box integrals with cuts on the final-state particles. The results are reduced to a combination of master integrals, which eventually are evaluated in terms of generalized polylogarithms. The presence of internal massive lines in the Feynman diagrams, due to the exchange of electroweak gauge bosons, causes the appearance of 14 master integrals which were not previously known in the literature and have been evaluated via differential equations.  相似文献   

6.
The relationship between the canonical operator and the path integral formulation of quantum electrodynamics is analyzed with a particular focus on the implementation of gauge constraints in the two approaches. The removal of gauge volumes in the path integral is shown to match with the presence of zero-norm ghost states associated with gauge transformations in the canonical operator approach. The path integrals for QED in both the Feynman and the temporal gauges are examined and several ways of implementing the gauge constraint integrations are demonstrated. The upshot is to show that both the Feynman and the temporal gauge path integrals are equivalent to the Coulomb gauge path integral, matching the results developed by Kurt Haller using the canonical formalism. In addition, the Faddeev–Popov form for the Feynman gauge and temporal gauge Lagrangian path integrals are derived from the Hamiltonian form of the path integral.  相似文献   

7.
The non-singlet quark structure function is calculated in the leading logarithm approximation in an axial gauge with n2 = 0, the light-cone gauge. The choice n2 = 0 leads to a simple identity for loop integrals involving the extra n · k denominators. We compare the results graph by graph with both Feynman gauge QCD and a scalar gluon theory. The leading diagrams are the same “rainbow” diagrams as for the case of the scalar theory.The techniques are also applied to quark-quark scattering at large transverse momentum. The leading diagrams have the same dressed ladder-form factor structure.  相似文献   

8.
The quasiclassical theory in terms of Feynman path integrals is used to calculate the decay of the Cooperon amplitude caused by transverse gauge field fluctuations in a disordered electron system. It is found that the phase relaxation rate in two dimensions varies linearly with the temperature as in the more common case of electric field fluctuations, but is proportional to the conductance rather than the resistance. A logarithmic correction factor is found in comparison to an earlier qualitative estimate.  相似文献   

9.
In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ–Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ–Lee term. We find that they cannot.  相似文献   

10.
The conventional cut-off method is applied to massless light-cone gauge Feynman integrals. Despite the presence of non-local terms in the unintegrated expression for the Yang-Mills self-energy, the cut-off procedure yields the same ultra-violet behaviour as the lengthier technique of dimensional regularization.  相似文献   

11.
It is demonstrated how mean field theory with corrections from fluctuations may be applied to lattice gauge theories in covariant gauges. By fixing the gauge at tree level the importance of fluctuations is decreased. This is understood as inclusion of terms of next-to-leading-order in d in the definition is the mean field tree approximation, d being the dimension of the lattice. The gauge group U(1) and Wilson's action are used as testing ground. Tree and one-loop results comparable to those previously obtained in axial gauge are obtained for d = 4. The next three correction terms to the free and plaquette energies are evaluated in Feynman gauge. The truncated asymptotic series thus obtained is compared to that of the ordinary weak coupling expansion. The mean field series gives, to those orders studied, a much better approximation. The location of phase transitions in 4d and 5d are predicted with 1% error bars.  相似文献   

12.
13.
The operator approach to analytical evaluation of multiloop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of massless Feynman integrals, such as the integration-by-parts method and the method of “uniqueness” (which is based on the star-triangle relation), can be drastically simplified by using this operator approach. To demonstrate the advantages of the operator method of analytical evaluation of multiloop Feynman diagrams, we calculate ladder diagrams for the massless ϕ 3 theory (analytical results for these diagrams are expressed in terms of multiple polylogarithms). It is shown how operator formalism can be applied to calculation of certain massive Feynman diagrams and investigation of the Lipatov integrable chain model. The text was submitted by the authors in English.  相似文献   

14.
《Physics letters. [Part B]》2004,578(1-2):231-234
We find the leading RG logs in ϕ4 theory for any Feynman diagram with 4 external edges. We obtain the result in two ways. The first way is to calculate the relevant terms in Feynman integrals. The second way is to use the RG invariance based on the Lie algebra of graphs introduced by Connes and Kreimer.  相似文献   

15.
We show how to interpret the scalar Feynman integrals which appear when reducing tensor integrals as scalar Feynman integrals coming from certain nice matroids.  相似文献   

16.
We use the holonomic character of Feynman integrals to describe their singularity structure explicitly in some simple cases. The results in §1 show that under moderate conditions Feynman amplitudes can be locally expressed essentially in terms of Legendre functions near the points where two positive- Landau-Nakanishi surfaces meet. Related topics such as hierarchical principle in perturbation theory are also discussed in terms of holonomic systems involved. In §4 we use the concrete expressions for Feynman amplitudes obtained in §1 to discuss the validity of Sato's conjecture.Supported in part by NSF MCS 75-2333Supported in part by NSF GP 36269  相似文献   

17.
We do mean-field perturbation theory for U(1) lattice gauge theory in the axial gauge, and evaluate corrections from fluctuations up to fourth order for the free energy and plaquette energy. Comparing with similar results previously obtained in the Feynman gauge we find, to those orders studied, a gauge dependence of the size of the first correction term neglected with one exception. This gauge dependence decreases rapidly as the order of the approximation is increased. To any finite order, results in axial gauge are better approximations than results in the Feynman gauge. We speculate why. Assuming it to be generally true, we evaluate the first correction beyond the one-loop mean-field approximation to the free energy of SU(2) gauge theory with Wilson action in the axial gauge. This correction brings the mean-field result very close to Monte Carlo results for β > 1.6. It also makes the mean-field result identical, within a narrow margin, to ressumed strong coupling results in the interval 1.6 < β < 2.4, thus showing the absence of a phase transition.For both groups studied, we find that the asymptotic series of mean-field perturbation theory give much better approximations than do ordinary weak coupling series.  相似文献   

18.
We apply perturbation theory to the gauge invariant version of the chiral Schwinger model. The cancellation of anomalies is shown explicitly in terms of Feynman diagrams. We calculate the exact propagators for the gauge field, for the Wess-Zumino field and for the mixing between these fields. Using these propagators, we demonstrate the existence of a massive state.  相似文献   

19.
This note is devoted to Feynman formulas (i.e., representations of semigroups by limits of n-fold iterated integrals as n → ∞) and their connections with phase space Feynman path integrals. Some pseudodifferential operators corresponding to different types of quantization of a quadratic Hamiltonian function are considered. Lagrangian and Hamiltonian Feynman formulas for semigroups generated by these operators are obtained. Further, a construction of Hamiltonian (phase space) Feynman path integrals is introduced. Due to this construction, the Hamiltonian Feynman formulas obtained here and in our previous papers do coincide with Hamiltonian Feynman path integrals. This connects phase space Feynman path integrals with some integrals with respect to probability measures. These connections enable us to make a contribution to the theory of phase space Feynman path integrals, to prove the existence of some of these integrals, and to study their properties by means of stochastic analysis. The Feynman path integrals thus obtained are different for different types of quantization. This makes it possible to distinguish the process of quantization in the language of Feynman path integrals.  相似文献   

20.
We present an operator quantization scheme on a continuous direct product of Hilbert spaces over a time interval as an extension of the quantization using Feynman path integrals. We define the continuous direct product as a Hilbert space with two principal bases: the Fock and the Feynman ones. The Fock basis, defined by a complete set of commuting operators at different times, serves for a definition of the operator calculus. The Feynman basis, simultaneously diagonalizing the complete set of commuting operators, leads to path integrals constructed without time slicing as a spectral representation of certain operator functions. The construction of quantum theory and the corresponding path integrals for the harmonic oscillator is demonstrated both in the configuration and phase spaces. The extension of the theory to coherent states and anticommuting variables is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号