首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The reactions of (Me2AlH)3 with Me2AsNMe2, MeAs(NMe2)2, and As(NMe2)3 were investigated as a function of time at room temperature and over the temperature range −90 to 24°C by use of 1H and 13C NMR spectroscopy. (Me2AlH)3 was found to be very reactive toward the aminoarsines, even at −90°C, and no stable Me2AlH-aminoarsine adducts were observed. Instead, the initial stages of the reactions involved AS---N bond cleavage with the generation of highly reactive AlN- and AsH-bonded species. The subsequent course of each reaction and the final arsenic-containing product distribution depended upon the original AL:N stoichiometric ratio and the respective aminoarsine. When the Al:N ratio was 1:1, the reactions were straightforward for each aminoarsine. However, in every case, [Me2AlNMe2]2 was the final AlN-containing product. Independent reactions were carried out to verify many of the proposed decomposition pathways that lead to thermodynamically stable products. The results of this study are compared with those of the analogous, previously reported (Me3Al)2-aminoarsine systems. Additionally, a new synthetic route to [Me2AlAsMe2]3 has been established from the reaction of (Me2AlH)3 with Me2AsH.  相似文献   

2.
The diol R2C(SiMe2OH)2 (R = Me3Si) has been shown to react with: SO2Cl2 to give R2 Me2; SOCl2 to give R2C(SiMe2Cl)2; Me3SiI or Me3SiCl to give R2C(SiMe2OSiMe3)2; R′COCl; (R′ = Me or CF3) to give R2C(SiMe2O2CR′)-(SiMe2Cl); (R′CO)2O (R′ = Me or CF3 to give R2C(SiMe2O2CR′)2; with MeOH containing acid to give R2C(SiMe2OMe)2; with neutral MeOH to give R2C-(SiMe2OMe)2 and probably R2 Me2; MeLi to give R2C(SiMe2OLi)2 (and the latter to react with PhMeSiF2 to give R2 Me2). The diacetate R2C(SiMe2O2CMe)2 reacts with CsF in MeCN to give R2C(SiMe2F)2; it does not react with NaN3 or KSCN in MeCN, but the bis(trifluoroacetate) reacts with these salts with KOCN to give R2C(SiMe2X)2 (X = N3, NCS, NCO).  相似文献   

3.
The monosilylated acyclic phosphazene ligand Me3SiNP(NMe2)2NP(NMe2)2 NH2 (3) has been synthesized and characterized. The reaction of 3 with antimony triacetate, Sb(OOCMe3), in refluxing toluene forms a cyclic phosphazene derivative, [N{P(NMe2)2NH}2Sb(OOCMe)2 (4), which is characterized by elemental analyses, mass, IR and NMR spectroscopy and single-crystal X-ray structural analysis. Complex 4 crystallizes in the form of a cis and trans isomeric chain in the solid state.  相似文献   

4.
Considered under the aspect of its ambidence, the reactivity of cyanamidonitrate [NO2NCN] towards triorganostannyl chlorides was investigated. The reaction products of type R3Sn-NCN-NO2 were characterized by 1H-NMR, 13C-NMR, 119Sn-NMR and IR spectroscopy. While cyanamides of the type [RnE(Y)NCN] (RnE(Y) = RC(O), RC(NCN), R2 P(O), R2P(S), R2P(NCN), RSO2) are coordinated exclusively either via the terminal nitrogen (monodentately) or via both the nitrile group end on and the chalcogen atom (bidentately), we found N-triorganostannyl-N′-nitro-carbodiimides as the first example in which the NCN group acts as a bidentate bridge with metal-N bonds in 1- and 3-position. For Me3Sn-NCN-NO2 the crystal structure was determined.

Zusammenfassung

Unter dem Aspekt der Ambidenz wurde die Reaktivität von Cyanamidonitrat [NO2NCN] gegenüber Triorganostannylchloriden untersucht. Die Reaktionsprodukte des Typs R3Sn-NCN-NO2 wurden 1H-NMR-, 13C-NMR-, 119Sn-NMR- sowie IR-spektroskopisch charakterisiert. Während Cyanamide des Typs [RnE(Y)NCN] (RnE(Y) = RC(O), RC(NCN), R2P(O), R2P(S), R2P(NCN), RSO2) ausschlieβlich über das terminale Stickstoff- (einzähnig) bzw. über das Nitrilstickstoff- und das Chalkogenatom (zweizähnig) gebunden werden, fanden wir mit N-Triorganostannyl-N′-nitro-carbodiimiden erstmalig Beispiele, in denen die NCN-Gruppe zweizähnig verbrückend in 1- und 3-Position koordiniert wird. Für Me3Sn-NCN-NO2 liegt eine Kristallstrukturbestimmung vor.  相似文献   


5.
The syntheses of the 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane-supported imido complexes [M(NR)(R′3tach)Cl2] (M = Ti or Zr (NMR only); R = But or 2,6-C6H3Pri2; R′ = Me or But) are reported, along with that of the thermally robust dibenzyl derivative [Ti(NBut)(Me3tach)(CH2Ph)2]. The tert-butylimido ligand in [Ti(NBut)(Me3tach)Cl2] undergoes exchange with ArNH2 (Ar = 4-C6H4Me or 2,6-C6H4Me or 2,6-C6H3Pri2) to form the corresponding arylimides [Ti(NAr)(Me3tach)Cl2]. The Me3tach ring in [Ti(NR)(Me3tach)Cl2] undergoes slow exchange with But3tach or Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) to give the ring-exchanged products [Ti(NR)(But3tach)Cl2] and [Ti(NR)(Me3tacn)Cl2], respectively. The complexes [Ti(NR)(Me3tach)X2] (R = But or 2,6-C6H3Pri2; X = Cl or CH2Ph) exhibit room-temperature dynamic NMR behaviour via an unusual trigonal twist of the facially coordinated Me3tach ligand, and the activation parameters for these processes have been measured and are discussed. The X-ray structures of [Ti(NR)(But3tach)Cl2] (R = But or 2,6-C6H3Pri2) and [Ti(NBut)(Me3tach)(X)2] [X= Cl or CH2Ph) are reported. Me3tach and But3tach = 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane, respectively.  相似文献   

6.
Alkylidene complexes (Me3SiCH2)3Ta(PMe3)=CHSiMe3 (1) and Me3SiCH2Ta(PMe3)2(=CHSiMe3)2 (3a) were found to react with phenylsilanes H2SiR′Ph (R′=Me, Ph) and (PhSiH2)2CH2 to give disilyl-substituted alkylidenes (Me3SiCH2)3Ta=C(SiMe3)(SiHR′Ph) (2) and novel metallasilacyclobutadiene and metalladisilacyclohexadiene complexes. Silyl-substituted alkylidene complex (ButCH2)2W(=O)[=C(But)(SiPh2But)] (5a) was prepared from the reaction of O2 with an equilibrium mixture (ButCH2)W(=CHBut)2(SiPh2But) (4b) (ButCH2)2W(CBut)(SiPh2But) (4a). Our recent studies of the preparation of these complexes and mechanistic pathways in the formation of these silyl-substituted alkylidene complexes are summarized.  相似文献   

7.
Protonation of the lithium triphospha-cyclopentenyl salt Li (P3C2But2RR′) (R=(Me3Si)2CH-, R′=Bun) with HCl affords the new 2,3-dihydro-1H-[1,2,4] triphosphole P3C2But2(H) (Bun)CH(SiMe3)2 which has been structurally characterised as its [W(CO)5] complex.  相似文献   

8.
New functional polysilanes [R2R1Si(CH2)2SiH]n (R=Me, R1=H (1); R=R1=Et (2); R=Me, R1=Ph (3)) bearing carbosilyl side chains have been synthesized by catalytic dehydropolymerization of precursor carbosilanes R2R1SiCH2CH2SiH3 using Cp2TiCl2–BuLi as a catalyst. These polymers are characterized by 1H, 13C, 29Si, {1H–29Si} HSQC NMR spectroscopy, GPC and TGA. Attempts to delineate the tacticity from the analysis of deconvoluted 29Si{1H}-NMR signals associated with the side chain silicon atoms reveal that the triad concentration ratio follows a Bernoullian statistical model for polymers 1 and 2 only.  相似文献   

9.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

10.
A series of Cu(II) complexes of disubstituted 2,2′-bipyridine bearing ammonium groups [Cu(L1−4)2Br]5+ (1–4, L1 = [5,5′-(Me2NHCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+, L3 = [4,4′-(Me2NHCH2)2-bpy]2+, L4 = [4,4′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl) were synthesized, of which complexes 1 and 4 were structurally characterized. Both coordination configurations of Cu(II) ions can be described as distorted trigonal bipyramid. The interaction between all complexes and CT-DNA was evaluated by thermal-denaturation experiments and CD spectroscopy. Results show that the complexes interact with CT-DNA via outside electrostatic interactions and their binding ability follows the order: 1 > 2 > 3 > 4. In the absence of any reducing agents, the cleavage of plasmid pBR322 DNA by these complexes was investigated and the hydrolysis kinetics of DNA was studied in Tris buffer (pH 7.5) at 37 °C. Obtained pseudo-Michaelis–Menten kinetic parameters: 15.0, 13.6, 2.01 and 1.69 h−1 for 1, 2, 3 and 4, respectively, indicate that complexes 1 and 2 exhibit very high DNA cleavage activities. According to their crystal data, the high nuclease activity may be attributed to the strong interaction of the metal moiety and two ammonium groups with phosphate groups of DNA.  相似文献   

11.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

12.
Whilst mono(silyl)triazenes R′N=N---NR′(SiR3) and organyl triazenes R′N=N---NR′2 are of comparable thermal stability and decay by a radical reaction, bis(silyl)triazenes R′N=N---N(SiR3)2 (R′=aryl, R=Me, Et, OMe) decompose at room temperature in a non-radical reaction to yield amines R′N(SiR3)2 and nitrogen. Kinetic investigations of the mechanism of the non-radical thermolysis of triazenes show that the rate of the thermolysis of R′N=N---N(SiR3)2 is determined both from an isomerisation equilibrium forming (R3Si)R′N---N=N(SiR3) and from the rate of decomposition of this compound to the thermolysis products. Tris(silyl)triazenes, (R3Si)2N---N=N(SiR3), hitherto not synthesized, are expected to be even more unstable than the bis(silyl)triazenes which have been examined by us.  相似文献   

13.
The potential of Fe(CO)41-dppf) (dppf = 1,1′-bis(diphenylphosphino)ferrocene) as a precursor for heterometallic species is fully expanded in the synthesis of (OC)4Fe(μ-dppf)Cr(CO)5, (OC)4Fe(μ-dppf)W(CO)5, and (OC)4Fe(μ-dppf)Mn2(CO)9, all of which have been characterized by IR, NMR (1H and 31P) and elemental analyses. The low energy requirement of TMNO (Me3NO · 2H2O)decarbonylation allows the formation of monosubstituted Mn2(CO)10 as the major product. This aspect is further substantiated by the isolation of Mn4(CO)18(μ-dppf) in which the single bridging of a diphosphine group between two Mn2(CO)9 moieties is unprecedented.  相似文献   

14.
The preparation, spectroscopic characterization and magnetic study of N,N′-bis(substituted-phenyl)oxamidate-bridged nickel(II) dinuclear complexes of formula {[Ni(N3-mc)]2(μ-CONC6H4-X)}(PF6)2 (N3-mc = 2,4,4-trimethyl-1,5,9-triazacyclo-dodec-1-ene (Me3-N3-mc) or 2,4,4,9-tetramethyl-1,5,9-triazacyclododec-1-ene (Me4-N3-mc), X = 2-Cl, 4-Cl, 2-OCH3, 4-OCH3) are reported. These paramagnetic nickel(II) complexes have been characterized by both one- and two-dimensional (COSY) 1H NMR techniques. The COSY spectrum of 5 has allowed to achieve the assignment of the phenyl protons of the N,N′-diphenyloxamidate. The crystal structures of [Ni(Me3-N3-mc)(μ-CONC6H4-4-Cl)]2(PF6)2 (6), [Ni(Me3-N3-mc)(μ-CONC6H4-4-OMe)]2(PF6)2 (8) and [Ni(Me4-N3-mc)(μ-CONC6H4-2-Cl)]2(PF6)2 (9) have been determined and their magnetic properties have been studied. The value of magnetic coupling between the two nickel(II) ions across the oxamidate bridge [J = − 37.6 (6), −39.9 (8) and −39.7 cm−1 (9)] is sensitive to the distortion of the coordination sphere of the metal ions and the topology of the molecular bridge.  相似文献   

15.
The dialkylamides of tin react with ironpentacarbonyl to form carbene complexes. With Me2Sn(NMe2)2 and Sn(NMe2)4 yellow dicarbene complexes are formed by addition of two Sn---N bonds to adjacent carbonyl groups. The two carbenoid systems on the central atom are parts of a chelate ligand connected by an ---O---Sn---O--- bridge. Using [Sn(NMe2)2]2, a red monomeric compound (CO)3Fe(CONMe2)2Sn containing the same cyclic structural unit can be isolated. The free activation enthalpy of rotation about the C(carbene)---N bond in the tin (IV) dicarbene complexes was found to be 16.5 kcal mol-1.  相似文献   

16.
Photochemical reaction of (CO)2(dppe)Fe(H)(SiR3) with HSiR3 (SiR3 = Si(OMe)3, Si(OEt)3, SiMe3, SiMe2Ph, SiPh3) yields the trihydrido silyl complexes (CO)(dppe)FeH3(SiR3 ). The analogous complexes (PR′Ph2)3 FeH3(ER3) are prepared by reaction of the H2 -complexes (PR′Ph2)3FeH2(H2) with HER3 (ER3 = SiMe3, SiMC2Ph, SiMePh2, SiPh3, Si(Me2)OSi(Me2)H, SnPh3, SnEt3). Additional derivates of (CO) (dppe)FeH3(SiR3) (SiR3 = SiMePh2) and (PR′Ph2)3FeH3(SiR3) (SiR3 = Si(OMe)3, SiH2Ph, SiHPh2, Si(OEt)3, SiMePhCl) are accessible by silane exchange starting from (CO)(dppe)FeH3(SiMe3) and (PR′Ph2) 3FeH3(SiMe3). (PBuPh2)3FeH3(SiMePh2) was also prepared from (PBuPh2)3FeH2(N2) and HSiMePh2, and (PBuPh2)3FeH3(SnMe3) from (PBuPh2)3FeH2(H2) and Me3SnCl. The complex (PBuPh2) 3FeH3(SnMe3) crystallizes as a toluene solvate in the cubic space group I 3d and shows crystallographically imposed C3-symmetry. The complexes (CO)2 (dppe)Fe(H)(SiR3) and (PR′Ph2)3FeH3(ER3) are highly dynamic in solution. Low temperature NMR measurements and the E, Fe, H coupling constants strongly indicate that the exchange mechanism involves η2-HER3 ligands.  相似文献   

17.
The reactions of R2P–P(SiMe3)2 (R = Ph, iPr and iPr2N) with BuLi in THF or DME solution lead to ion-contacted lithium derivatives R2P–P(SiMe3)Li · 3THF (R = iPr, iPr2N) with tetrahedrally surrounded Li atoms and to the solvent-separated ionic [Li · 3DME]+[Ph2P–PSiMe3] with an octahedrally surrounded Li atom as confirmed by X-ray crystal structure analysis. The reaction of BuLi with Ph2P–P(SiMe3)2 is accompanied with a significant side-reaction leading to Ph2P–PPh2 and to LiP(SiMe3)2.  相似文献   

18.
Previous structural investigations of mesogenic organosilicon compounds (1, 3-dihydroxytetraalkyldisiloxanes, [R2(OH)Si]2O, R = CnH2n+1) which form thermotropic phases are outlined. The crystal and molecular structure determination of a non-mesogenic member of this series [Me2(OH)Si]2O is described. It is inferred that the mesophases formed by this family of compounds belong to a new structural type with columnar stacks of the molecules laced together with hydrogen bonds.  相似文献   

19.
The dimethylmetal bis(trimethylgermyl)amides of Al, Ga, and In have been prepared from Li[N(GeMe3)2] and Me2MCl (Me = CH3, M = Al, Ga) or Me2MCN (M = Ga, In) in inert solvents. The NMR (1H, 13C) and vibrational spectra (IR and Raman) of these dimeric compounds have been assigned and discussed. According to the X-ray structure determination [Me2InN(GeMe3)2]2 crystallizes in the monoclinic space group C2/c (Z = 4, R = 0.032) and is isomorphous with the bis(trimethylsilyl) homologue.  相似文献   

20.
The reactions of BrMn(CO)5 with the non-chelating stereochemically rigid bidentate ligands (L-L) 1,3-, and 1,4-diisocyanobenzene, 4,4′-diisocyanobiphenyl, and 4,4′-diisocyanodiphenylmethane afford well characterized complexes of the types BrMn(CO)4(L-L), BrMn(CO)3(L-L)2, and [BrMn(CO)4]2(L-L). Similar reactions with [RC5H4Mn(CO)2NO]+PF6 gave mixtures of oligomers of the type [(RC5H4MnNO)n(L-L)n+1]n+[PF6]n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号