首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissipative patterns during the course of dryness of aqueous solution of potassium salt of poly(riboadenylic acid) (KPolyA) in the presence of potassium chloride were studied on a cover glass, a watch glass and a glass dish. Accumulation of KPolyA polymers forming the broad ring area and the drastic change in size and shape of the polymer single crystals depending on the location of the dried film, which are the typical effects of the dissipative crystallization, took place. Polymer crystals formed were spherulites, dendritic and rod-like assemblies, which are composed of the single or double helical chains depending on the pH-value of the initial solution.  相似文献   

2.
Drying patterns of aqueous solutions of potassium salts of poly(riboguanylic acid) (KPolyG), poly(ribocytidylic acid) (KPolyC), and their mixtures KPolyG + KPolyC were studied on a cover glass, a watch glass, and a glass dish at room temperature. Accumulation of the polymers forming the broad rings near the outside edge and also in the inner area of the dried film was observed. The fine multiple ring structures formed, which supports the fact that the affinity of the polymer with the substrate is strong. Typical microscopic drying patterns of KPolyG, KPolyC, and KPolyG + KPolyC were spherulites, dendritic long rods, and sword (harberd)-like rods, respectively. The patterns changed depending on the location in the dried film. The dendritic long rods and sword-like rods were assigned to the crystals of double-stranded and/or triple-stranded helices of the G:C and 2G:C complexes. Cross-like drying patterns that originated from the salt-polymer interaction are also observed. The relationship between the polymer complexation of KPolyG + KPolyC systems and the drying patterns is similar to that of KPolyA (potassium salt of poly(adenylic acid)) + KPolyU (potassium salt of poly(uridylic acid)).  相似文献   

3.
Drying dissipative patterns were observed at room temperature on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solution of sodium salts of poly (d-glutamic acid), poly (l-glutamic acid), and their low molecular weight analogs, monosodium d-glutamate, monosodium l-glutamate, and monosodium dl-glutamate. The low molecular weight analogs were hygroscopic and their drying patterns were observed in a dry box coexisted with the bags of desiccant. The broad rings, which are the typical macroscopic drying patterns, were observed for all the samples. Optical isomeric effects on the drying patterns were not recognized. Spherulite (or hedrite) and rod-like crystals from the assemblies of helical main chains of the polymers are formed mainly at the inner area from the broad ring (except central area) and the broad ring area, respectively. Coexistence of sodium chloride enhanced the crystal structures by the cooperative interactions between the polymers and the salts. The typical dissipative crystallization such as accumulation, segregation, and orientation effects of crystals were observed in the drying patterns.  相似文献   

4.
5.
Drying dissipative patterns were observed at room temperature on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solution of sodium salts of carboxymethyl cellulose (NaCMC) having different molecular weights in the presence of sodium chloride and in their absence. Without salt, the polymers were slightly hygroscopic and did not dry up completely on the substrates. Single crystals of the NaCMC without salt were short rodlike and quite similar to those of the other polysaccharides studied hitherto, i.e., hydroxypropyl cellulose and sodium dextran sulfate. Morphology of the polymer crystals were short rods, long dendritic rods, and/or hedrite assemblies depending on location in the dried film and in the presence of sodium chloride. Spoke-like orientation of the long dendritic rods appeared on a cover glass and a watch glass especially for NaCMC of low molecular weights.  相似文献   

6.
Drying dissipative structures of aqueous solution of sodium polymethacrylate (NaPMA) were studied on a cover glass, a watch glass, and a glass dish. Any convectional and sedimentation patterns did not appear during the course of dryness. Several important findings on the drying patterns are reported. Firstly, spherulite and hedrite dissipative crystals were observed when the polymer solutions were dried. The crystalline structures changed from hedrites to spherulites as polymer concentration increased. Secondary, the coupled structures of the spherulites and the broad rings were observed for NaPMA at the outside edge of the broad ring. However, the coupled crystalline structures of the lamellaes from the broad ring and the spherulites, which were observed for poly(ethylene glycol) (Okubo et al. 2009), were not observed clearly for NaPMA system. Thirdly, size of the broad ring at the outside edge of the dried film increased sharply as polymer concentration increased.  相似文献   

7.
Drying dissipative structures of aqueous solutions of hydroxypropyl cellulose, their viscosities of 2 wt.% solutions ranging from 2 to 2,000 mPa.s were studied on a cover glass, a watch glass, and a Petri glass dish. The thickness profile of the dried film shows the coexistence of a low round hill and a high broad ring on a cover glass. The broad ring size increased as molecular weight and/or concentration of the polymers increased on a cover glass and a watch glass. Microscopic drying crystal patterns of HPC changed as a function of the distance from the film center, which is one of the typical results of the dissipative crystallization. Rod-like microscopic drying patterns originated in the cholesteric liquid crystalline structures were observed. The rods oriented mainly parallel and in some case perpendicularly to the radial direction of the dried film except the central area, where the rods distributed at random. These orientation effects were significant for low molecular weight samples and in a watch glass.  相似文献   

8.
The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.  相似文献   

9.
10.
The enthalpy of dissociation of poly(acrylic acid) and of poly(methacrylic acid) in water and in 0.5N NaCl at 25°C has been measured over a wide range of degrees of neutralization of the polyelectrolytes. In the case of poly(methacrylic acid) the calorimetric data permit the direct evaluation of the enthalpy of conformational transition of the polymer. For this transition, with the aid of standard free energy data derived from potentiometric titrations, the change in entropy was also estimated. The relative accuracy of the thermodynamic data, and the possibility of deriving therefrom information on the mechanism of transitions of the type, globular coils → expanded coils for partially hydrophobic synthetic polyelectrolytes in aqueous solution are discussed.  相似文献   

11.
In aqueous solutions, beta-cyclodextrin (CD) and cyclodextrin-containing polymers (PolCD) associate with azobenzene-modified polyacrylate (AMP). Inclusion complexes in solution of CD (or PolCD) and AMP, and the viscosity of these mixtures, have been studied as a function of the composition of AMP and concentrations of samples. AMPs are random copolymers containing a low fraction of a light-responsive hydrophobic moieties (<10 mol % of 6-[4-alkylamido]phenylazobenzene acrylamide), and a charged hydrophilic unit, sodium acrylate. PolCDs are beta-cyclodextrin randomly conjugated with epichlorohydrin and fractionated to yield copolymers of average number of CD per chain equal to 50. In dilute solutions, the composition of complexes has been investigated by capillary electrophoresis and UV-vis spectrometry. Association between PolCD and AMP appears more complex than the conventional Benesi-Hildebrand scheme. We identified a tight (quantitative) binding regime followed by a gradual increase of the density of AMP-bound PolCD upon increasing the concentration of PolCD. At higher concentrations, the formation of large clusters has been characterized by the increase of viscosity by several decades. Light-triggered trans-conformation of the azobenzene moieties of AMPs leads to a marked photoswitch of viscosity. Reversible viscosity swings by up to 6-fold were achieved by alternative exposure to UV and visible lights. In contrast, the composition of PolCD/AMP complexes in dilute regime does not respond to light, though subtle modifications of the structures of complexes are reflected by variation of electrophoretic mobilities and UV spectra. The properties of interpolymer clusters and photoviscosity are accordingly the result of modification of the dynamics of association. In practice, the low concentration of photochrome makes it possible to obtain rapid responses in samples having a thickness of the order of cm. The data reported provide guidelines for the formulations of CD/polymer systems, specifically, viscosity enhancers, which should show promising developments in pharmaceuticals or cosmetics.  相似文献   

12.
The effects of urea on aqueous solutions of both poly(methacrylic acid (PMA) and poly(acrylic acid) (PAA) have been investigated by using potentiometry, viscometry and study of the fluorescence of Auramine O, a cationic dye. The viscosity behaviour of unionized PMA obtained from direct dissolution of solid powder shows that the unneutralized macromolecules can be associated in water. The stability of such “aggregates” seems weak as indicated by their disappearance as soon as the charge density is very low. For PMA salt solution percolated through a cation (H+) exchange resin column, no association is observed. The pH-dependent conformational behaviour of PMA which, contrary to PAA, presents compact conformations in water at low charge density is discussed in terms of solvophobic/solvophilic interactions. It is shown that, even for urea concentration up to 8 M, the compact conformations of PMA are not completely destroyed. The formation of H+/urea complex is taken into account.  相似文献   

13.
14.
Drying patterns of aqueous solutions of sodium salt of deoxyribonucleic acid (NaDNA) were studied on a cover glass, a watch glass, and a Petri glass dish at room temperature. Orientation of the rod-like single crystals of NaDNA molecules in the radial direction was observed especially at low polymer concentrations. The ratios of the size of the broad ring against initial size of the liquid on a cover glass and a watch glass were very small between 0.05 and 0.1 compared with those of the typical polyelectrolytes. Main cause is the compact conformation of NaDNA forming single or double stranded helix structures in the dried film. Microscopic drying patterns were long rods accompanied with the many short rods especially on a cover glass. Thick and short rods and dendritic crystals were fogrmed at the inward and outward areas of the dried films, respectively, on a watch glass and a Petri glass dish. Rod-like and dendritic crystals resembled the distorted hedrite and/or spherulite structures. Dissipative crystallization such as the orientation and accumulation of the single crystals of NaDNA were observed and the importance of the convectional and sedimentation processes was demonstrated during the course of crystallization.  相似文献   

15.
Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. In this study, solubility in water, water activity (a(w)) of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid (MA) with ammonium sulfate (AS) and ammonium bisulfate (ABS) at 25 degrees C over the full range of composition (from 0 wt % to the solubility limit of the mixture components). The data were used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity (RH). This work complements previous reports on the thermodynamic properties of AS/MA mixtures because the range of concentrations investigated is larger than in any other published single study. On the other hand, this is the first report on the a(w), deliquescence, and water absorption of ABS/MA mixtures. The eutonic composition for AS/MA mixtures was found to be 66.8 MA dry wt % (MA dry wt % = MA mass x 100/(AS mass + MA mass) with a DRH of 0.437. The eutonic composition for the ABS/MA mixtures was lower than for the AS/MA mixtures: 20.9 MA dry wt % with a DRH of 0.327. Measured a(w) of liquid AS/MA and ABS/MA solutions is compared with an extended Zdanovskii-Stokes-Robinson expression, obtaining a good agreement (error < 5-6%). The expression was used to predict water uptake of mixtures and might be useful to interpret particle hygroscopic growth experiments. Comparison of the AS/MA and ABS/MA systems indicates that ABS reduces the DRH and enhances water uptake, relative to mixtures with AS. The results confirm that ambient particles containing sulfate and water-soluble organic compounds can remain liquid or partially liquid at very low ambient RH conditions, especially if the sulfate is not completely neutralized.  相似文献   

16.
Effects of stereoregularity and crystallization mode on the amorphous phase dynamics are investigated for poly(lactic acid) PLA. An isothermal crystallization from the melt and a cold crystallization are imposed. For each PLA, the cold crystallization leads to the appearance of a less perfect crystalline phase and to an important rigid amorphous fraction RAF content (35%), although only 10% of RAF is generated after crystallization from the melt. Temperature Modulated Differential Scanning Calorimetry is used to determine the Cooperative Rearranging Regions (CRR) size at the glass transition temperature in the mobile amorphous phase MAP. It is shown that the CRR size in the MAP is not modified by the appearance and the spherulite growth. For the intra-spherulite MAP, a confining effect is evidenced, causing an amorphous phase thickness decrease during crystallization, and inducing a drastic CRR size reduction.  相似文献   

17.
The polymers of lithium, sodium, potassium, and caesium salts of methacrylic acid have been prepared by free radical polymerization of the respective monomers in methanol solution. The degradation behavior of the polymers has been investigated by thermal volatilization analysis, thermogravimetry, and product analysis. These materials are stable to about 350°C under programmed heating at 10°C/min in vacuo. The principal degradation products are monomer, the corresponding isobutyrate, carbonate, oxide, carbon dioxide, and a fraction of liquid volatiles that is complex and contains a variety of aldehydes and ketones. The mechanism of degradation is discussed in detail.  相似文献   

18.
Several poly(N-vinylacetamide-co-acrylic acid)s with various copolymer compositions have been synthesized, and their unique phase-transition behavior in aqueous salt (Na2SO4 or NaCl) solutions was investigated. Copolymers containing more than 51 mol % N-vinylacetamide (NVA) show reentrant soluble-insoluble-soluble transitions with increasing temperature. The soluble-insoluble transition temperature (T(p1)) increased linearly with increasing NVA content, whereas the insoluble-soluble transition temperature (T(p2)) was almost constant irrespective of the NVA content. Potentiometric titration of the copolymer solutions suggested that the acrylic acid (AA) carboxyl groups form hydrogen bonds with the NVA amide groups even under soluble conditions. Dehydration of the NVA amides and their consequent hydrogen bonding with the AA carboxyl groups during the soluble-insoluble transition process was indicated by FTIR measurements. Addition of salt (Na2SO4 or NaCl) to the aqueous media reduces the solvent quality and enhances the intra- and interchain interactions of the copolymers. Thus, T(p1) was observed to decrease and T(p2) was observed to increase with increasing salt concentration. However, the addition of urea to the media reverses the concentration dependence of T(p1) and T(p2) by disturbing the intra- and interchain interactions of the copolymers.  相似文献   

19.
20.
Five poly (amic acid) solutions based on PMDA-PDA, PMDA-ODA, PMDA-6F, ODPA-ODA, and 6FDA-ODA were prepared in N-methylpyrrolidone at a polymer concentration of ca. 10 wt %. From these five poly (amic acid) solutions, six different binary blends were prepared: PMDA-PDA/PMDA-ODA, PMDA-PDA/PMDA-6F, PMDA-ODA/6FDA-ODA, PMDA-ODA/ODPA-ODA, PMDA-PDA/ODPA-ODA, and PMDA-PDA/6FDA-ODA. These blends were then characterized with respect to miscibility in the ternary state (polyamic acid-1/polyamic acid-2/N-methylpyrrolidone), the condensed state (ca. 70 wt % polymer), and the fully imidized state. All blends except for PMDA-PDA/PMDA-6F yielded homogeneous mixtures in the ternary solution of 10 wt % polymer concentration. The PMDA-PDA/PMDA-6F mixture eventually became homogeneous after 10 days of mixing at room temperature. Upon solvent evaporation (condensed state) and full cure (imidized state) two blends incorporating ODPA-ODA as one of the components exhibited apparent miscibility as evidenced by optical microscopy. The remaining blends exhibited large-scale phase separation upon solvent evaporation with no significant differences in the overall morphology between the condensed and imidized state. However, as in the case of the PMDA-PDA/PMDA-6F ternary system, the morphology in the condensed and imidized state was strongly dependent on the mixing time of the precursor poly(amic acid) components; the phase-separated domain size decreased with increasing mixing time, eventually leading to complete miscibility. These results are discussed with respect to the proposed “polymer-monomer” reequilibration reaction as well as its implications with respect to the preparation of polyimide molecular composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号