首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.  相似文献   

2.
The interfacial and bulk properties of submicron oil-in-water emulsions simultaneously stabilised with a conventional surfactant (either lecithin or oleylamine) and hydrophilic silica nanoparticles (Aerosil?380) were investigated and compared with emulsions stabilised by either stabiliser. Emulsions solely stabilised with lecithin or oleylamine showed poor physical stability, i.e., sedimentation and the release of pure oil was observed within 3 months storage. The formation and long-term stability of silica nanoparticle-coated emulsions was investigated as a function of the surfactant type, charge, and concentration; the oil phase polarity (Miglyol?812 versus liquid paraffin); and loading phase of nanoparticles, either oil or water. Highly stable emulsions with long-term resistance to coalescence and creaming were formulated even at low lecithin concentrations in the presence of optimum levels of silica nanoparticles. The attachment energy of silica nanoparticles at the non-polar oil-water interface in the presence of lecithin was significantly higher compared to oleylamine in line with good long-term stability of the former compared to the sedimentation and release of oil in the latter. The attachment energy of silica nanoparticles at the polar oil-water interface especially in the presence of oleylamine was up to five-times higher compared to the non-polar liquid paraffin. The interfacial layer structure of nanoparticles (close-packed layer of particle aggregates or scattered particle flocs) directly related to the free energy of nanoparticle adsorption at both MCT oil and liquid paraffin-water interfaces.  相似文献   

3.
Using positively charged plate-like layered double hydroxides (LDHs) particles as emulsifier, liquid paraffin-in-water emulsions stabilized solely by such particles are successfully prepared. The effects of the pH of LDHs aqueous dispersions on the formation and stability of the emulsions are investigated here. The properties of the LDHs dispersions at different pHs are described, including particle zeta potential, particle aggregation, particle contact angle, flow behavior of the dispersions and particle adsorption at a planar oil/water interface. The zeta potential decreases with increasing pH, leading to the aggregation of LDHs particles into large flocs. The structural strength of LDHs dispersions is enhanced by increasing pH and particle concentration. The three-phase contact angle of LDHs also increases with increasing pH, but the variation is very small. Visual observation and SEM images of the interfacial particle layers show that the adsorption behavior of LDHs particles at the planar oil/water interface is controlled by dispersion pH. We consider that the particle-particle (at the interface) and particle-interface electrostatic interactions are well controlled by adjusting the dispersion pH, leading to pH-tailored colloid adsorption. The formation of an adsorbed particle layer around the oil drops is crucial for the formation and stability of the emulsions. Emulsion stability improves with increasing pH and particle concentration because more particles are available to be adsorbed at the oil/water interface. The structural strength of LDHs dispersions and the gel-like structure of emulsions also influence the stability of the emulsions, but they are not necessary for the formation of emulsions. The emulsions cannot be demulsified by adjusting emulsion pH due to the irreversible adsorption of LDHs particles at the oil/water interface. TEM images of the emulsion drops show that a thick particle layer forms around the oil drops, confirming that Pickering emulsions are stabilized by the adsorbed particle layers. The thick adsorbed particle layer may be composed of a stable inner particle layer which is in direct contact with the oil phase and a relatively unstable outer particle layer surrounding the inner layer.  相似文献   

4.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

5.
The effect of spray drying and reconstitution has been studied for oil-in-water emulsions (20.6% maltodextrin, 20% soybean oil, 2.4% protein, 0.13 M NaCl, pH 6.7) with varying ratios of sodium caseinate and whey protein, but with equal size distribution (d32=0.77 μm). When the concentration of sodium caseinate in the emulsion was high enough to entirely cover the oil–water interface, the particle size distribution was hardly affected by spray drying and reconstitution. However, for emulsions of which the total protein consisted of more than 70% whey protein, spray drying resulted in a strong increase of the droplet size distribution. The adsorbed amount of protein ranged from 3 mg m−2 for casein-stabilised emulsions to 4 mg m−2 for whey protein-stabilised emulsions with a maximum of 4.2 mg m−2 for emulsions containing 80% whey protein on total protein, which means that for all these emulsions about one quarter of the available protein was adsorbed at the oil–water interface. The adsorbed amount of protein was hardly affected by spray drying. After emulsion preparation casein proteins adsorbed preferentially at the oil–water interface. As a result of spray drying, the relative amount of β-lactoglobulin in the adsorbed layer increased strongly at the expense of s1-casein and β-casein. Percentages of s2-casein and κ-casein in the adsorbed layer remained largely unchanged. The changes in the protein composition of the adsorbed layer as a result of spray drying and reconstitution were the largest when beforehand hardly any whey protein was present in the adsorbed layer and hardly any sodium caseinate in the aqueous phase. Apparently, during spray drying conditions have been such that β-lactoglobulin could unfold, aggregate, and react with other cystein-containing proteins changing the particle size distribution of the emulsions and the composition of the adsorbed layer. It seemed, however, that non-adsorbed sodium caseinate in some way was able to protect the adsorbed casein proteins from being displaced by aggregating whey protein.  相似文献   

6.
Formula emulsion systems are used as enteral, sports and health products. In some formulas addition of hydrolysed protein is necessary to guarantee ease of digestion and hypoallergenicity. In the low fat emulsion model an increase in the content of lecithin (phospholipid mixture) was required, in consideration of the advice of the Food and Nutrition Board (USA) for choline supplementation. The individual and interactive effects of whey protein isolate (WPI) or hydrolysate (WPH) (3.7 and 4.9% w/w), unmodified deoiled or hydrolysed lecithin (0.48 or 0.7% w/w) and carbohydrate in the form of maltodextrin with dextrose equivalent (DE) 18.5 or glucose syrup with DE 34 (11% w/w) on the properties of formula emulsions with 4% v/w sunflower oil, were investigated using a full factorial design. The emulsions were characterised by particle size distribution, coalescence stability, creaming rate, and also surface protein and lecithin concentration. WPI-containing emulsions proved to be stable against coalescence and showed only little creaming after 1 and 7 days standing. There was a significant increase in the mean droplet size and a significant deterioration of coalescence and creaming stability when WPH instead of WPI was used as the protein source, due to the lower number of large peptides and lower surface activity of the WPH. Increasing the WPH concentration led to an increase in oil droplet size and further deterioration of the stability of the emulsions. The starch hydrolysate and lecithin also significantly influenced the emulsion properties. Their influence was less strong when the emulsion contained WPI. Under the conditions used WPH-based emulsions were more stable, in terms of creaming and coalescence, when a low level of protein was used in conjunction with hydrolysed lecithin and glucose syrup. Oil droplets in emulsions containing unmodified lecithin in either the continuous or disperse phase and WPH in the continuous phase were very sensitive to coalescence. The addition of starch hydrolysates (DE 18.5) induced intensive flocculation and phase separation in these emulsions.  相似文献   

7.
Twelve oil-in-water nano-emulsions were prepared using a melt high-pressure homogenisation process (HPH) at 300, 800 or 1200 bar. The resulting emulsions containing 20 wt% palm oil in the absence or presence of α-tocopherol were stabilised by whey proteins alone or in mixture with lecithin. Lipid nanoparticles in these emulsions were characterized for their particle size, surface charge and protein surface concentration (PSC) in relation to their stability against aggregation and coalescence, and to their ability for encapsulation and protection of α-tocopherol against chemical degradation. Increasing HPH values were accompanied by the formation of lipid nanoparticles with decreasing size and PSC, but increasing long-term stability against aggregation and coalescence in parallel with an increase in α-tocopherol degradation (up to 15 wt% for 1200 bar). Presence of α-tocopherol, led to increasing (or decreasing) PSC values with increasing (or decreasing) HPH values for lipid nanoparticles stabilised by proteins alone (or in mixture with lecithins). In addition to these structural properties, the ability for α-tocopherol long-term stability of nanoparticles in emulsions was shown to differ more depending on their adsorbed materials (protein alone, or in mixture with lecithin) than on their particle size values. After 2 months storage, α-tocopherol in emulsions prepared at 300, 800 or 1200 bar was protected against chemical degradation at 79, 77, 67 wt%, respectively, when whey proteins were used alone, instead of 66, 63, 48 wt% when proteins were used in mixture with lecithins. These results indicated the dominant role of adsorbed proteins on the protection of vitamin models by nanoemulsions. They are of a great technological importance for production of lipid nanoparticles presenting a high volume-to-diameter ratio values and consequently high exchange surfaces between the matrix carrier and water and oxygen environmental factors.  相似文献   

8.
In the frame of formulation of W/O emulsions entrapping polysaccharides devoted to agricultural applications, the aim of this work was to study the stability over time of these emulsions, stabilized with either soybean lecithin or polyglycerol polyricinoleate (PGPR) as emulsifiers. Emulsifiers were dissolved in oil phase, and polysaccharides (carboxymethycellulose (CMC), guar, xanthan) in ultrapure water. Emulsions stability was studied through natural aging tests and accelerated aging tests, using bottle tests, microscopy and calorimetry. Experiments showed that PGPR was more efficient than lecithin to stabilize emulsions containing the polysaccharides studied, and that emulsions prepared with CMC showed the best stability.  相似文献   

9.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

10.
Three types of multiple emulsions were prepared with lecithin. The morphology, stability, and rheological properties of the three types of W/O/W multiple emulsions were evaluated. The formulation factors, including salts and aliphatic alcohol, were further examined. The three types of multiple emulsions were formed by different emulsifiers. An excellent multiple emulsion occurred with 2?wt% lecithin concentration, stabilized by 0.05?wt% NaCl. All multiple emulsions showed shear-thinning behavior, i.e., the apparent viscosity decreased with the increase of the shear rate. With the high concentration of lecithin, the multiple emulsions exhibited the highest viscosity at low shear rate and had higher storage modulus (G′) and the loss modulus (G″). This study was conducted to reveal that different types of multiple emulsions can be formed with lecithin, and that the stability and rheological properties were different with different types of multiple emulsions.  相似文献   

11.
Zedoary turmeric oil submicron emulsions were studied. The effects of the oil phase as a mixture (ternary) on the emulsion droplet size were investigated by means of the simplex lattice design. By optimizing the homogenization process and using only 1.2% soya lecithin, emulsions with 20% oil phase consisting of zedoary turmeric oil–MCT–soybean oil ratio of 0.5:0.25:0.25 with particle sizes in the range of 132–148 nm and moderate viscosity (3.6–4.0 mPa · s) could be prepared. These emulsions showed good stability over 6 months. This study showed the dominating influence of composition of the oil phase as well as the importance of the homogenizing conditions on processing and stability of the zedoary turmeric oil submicron emulsions.  相似文献   

12.
The adsorption from phospholipid liposome solutions (1.2%) and phospholipid stabilized oil-in-water emulsions (20% purified soybean oil) with the same phospholipid liposome concentration, has been followed by means of a quartz crystal microbalance allowing the simultaneous determination of changes in resonance frequency and energy dissipation. Both the fundamental resonance frequency and the third overtone were used for following the interfacial processes. The adsorption from the liposome solution resulted in formation of a phospholipid bilayer with an additional and incomplete outer layer of liposomes. The outer layer was removed by dilution leaving a bilayer of phospholipids on the surface. The adsorption process observed from the concentrated emulsion solution was considerably more complex. A slow spreading process that also resulted in some expulsion of material from the interface followed the rapid initial adsorption of emulsion droplets. After rinsing with water a phospholipid bilayer was retained on the surface.  相似文献   

13.
The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore.  相似文献   

14.
The stability and droplet size of protein and lipid stabilised emulsions of caraway essential oil as well as the amount of protein on the emulsion droplets have been investigated. The amount of added protein (beta-lactoglobulin) and lipid (phosphatidylcholine from soybean (sb-PC)) were varied and the results compared with those obtained with emulsions of a purified olive oil. In general, emulsions with triglyceride oil proved to be more stable compared with those made with caraway essential oil as the dispersed phase. However, the stability of the emulsions can be improved considerably by adding sb-PC. An increase in the protein concentration also promoted emulsion stability. We will also present how ellipsometry can be used to study the adsorption of the lipid from the oil and the protein from the aqueous phase at the oil-water interface. Independently of the used concentration, close to monolayer coverage of sb-PC was observed at the caraway oil-aqueous interface. On the other hand, at the olive oil-aqueous interface, the presence of only a small amount of sb-PC lead to an exponential increase of the layer thickness with time beyond monolayer coverage. The amounts of beta-lactoglobulin adsorbed at the caraway oil-aqueous interface and at the olive oil-aqueous interface were similar, corresponding roughly to a protein monolayer coverage.  相似文献   

15.
Effects of substituting native beta-lactoglobulin B (beta-lactoglobulin) with heat-treated beta-lactoglobulin as emulsifier in oil in water emulsions were investigated. The emulsions were prepared with a dispersed phase volume fraction of Phi=0.6, and accordingly, oil droplets rather closely packed. Native beta-lactoglobulin and beta-lactoglobulin heated at 69 degrees C for 30 and 45 min, respectively, in aqueous solution at pH 7.0 were compared. Molar mass determination of the species formed upon heating as well as measurements of surface hydrophobicity and adsorption to a planar air/water interface were made. The microstructure of the emulsions was characterized using confocal laser scanning microscopy, light scattering measurements of oil droplet sizes, and assessment of the amount of protein adsorbed to surfaces of oil droplets. Furthermore, oil droplet interactions in the emulsions were quantified rheologically by steady shear and small and large amplitude oscillatory shear measurements. Adsorption of heated and native beta-lactoglobulin to oil droplet surfaces was found to be rather similar while the rheological properties of the emulsions stabilized by heated beta-lactoglobulin and the emulsions stabilized by native beta-lactoglobulin were remarkably different. A 200-fold increase in the zero-shear viscosity and elastic modulus and a 10-fold increase in yield stress were observed when emulsions were stabilized by heat-modified beta-lactoglobulin instead of native beta-lactoglobulin. Aggregates with a radius of gyration in the range from 25 to 40 nm, formed by heating of beta-lactoglobulin, seem to increase oil droplet interactions. Small quantities of emulsifier substituted with aggregates have a major impact on the rheology of oil in water emulsions that consist of rather closely packed oil droplets.  相似文献   

16.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

17.
Oil-in-water emulsions (30 wt% sunflower oil) containing various concentrations of commercial whey protein hydrolysates (0-4 wt%) and hydrolysed lecithin (0.4-1.8 wt%) were prepared by means of a high pressure homogeniser. The degrees of hydrolysis used ranged from 10 to 27%. The individual and interactive effects of these factors on the particle size distribution, emulsion stability, consistency and interfacial tension were investigated using a three-level factorial design according to the principle of response surface methodology. The properties of the emulsions containing both hydrolysed lecithin and whey protein hydrolysate (WPH) were significantly influenced by the degree of hydrolysis of WPH, the protein content and the second-order interaction between both. Addition of WPH, with a 10-20% degree of hydrolysis, improved the stability of lecithin-stabilised emulsions and slightly decreased the average droplet size, compared to those emulsions with only protein or hydrolysed lecithin. However, when extensively hydrolysed WPH (DH=27%) was mixed with hydrolysed lecithin, rapid coalescence and oiling-off of the emulsion droplets resulted, suggesting competition between the surface active components of this WPH and the hydrolysed lecithin. High amounts of such an extensively hydrolysed WPH, together with low lecithin concentrations, were found to be especially detrimental. The different behaviour of partially and extensively hydrolysed WPH in oil-in-water emulsions containing hydrolysed lecithin, was in good agreement with their interfacial activity, as measured by the drop volume method.  相似文献   

18.
Adsorption of cationic high molecular weight polyacrylamides (CPAM) (M(w) is about 800 kDa) with different fractions of cationic units tau = 0.09 and tau = 0.018 onto silica surface was studied over a wide range of pH (4-9) and KCl concentration (c(s) = 10(-3)-10(-1) M) by in-situ null ellipsometry. We discuss how the adsorbed layer depends on the bulk conditions as well as kinetically responds to changes in solution conditions. The adsorbed amount Gamma of CPAM increases with pH for all studied electrolyte concentrations until a plateau Gamma is reached at pH > 6. At low pH we observed an increase in adsorbed amount with electrolyte concentration. At high pH there is no remarkable influence of added salt on the values of the adsorbed amount. The thickness of adsorbed polymer layers, obtained by ellipsometry, increases with electrolyte concentration and decreases with pH. At low c(s) and high pH the polyelectrolyte adsorbs in a flat conformation. An overcompensation of the surface charge (charge reversal) by the adsorbed polyelectrolyte is observed at high c(s) and low pH. To reveal the reversibility of the polyelectrolyte adsorption with respect to the adsorbed amount and layer thickness, parameters such as polyelectrolyte concentration (c(p)), c(s), and pH were changed during the experiment. Generally, similar adsorbed layer properties were obtained independent of whether adsorption was obtained directly to initially bare surface or by changing pH, c(s), or the concentration of polyelectrolyte solution in the presence of a preadsorbed layer, provided that the coverage of the preadsorbed layer was low. Once a steady state of the measured parameters (Gamma, d) was reached, experimental conditions were restored to the original values and corresponding changes in Gamma and adsorbed layer thickness were recorded. For initially low surface coverage it was impossible to restore the layer properties, and in this case we always ended up with higher coverage than the initial values. For initial high surface coverage it was usually possible to restore the initial layer properties. Thus, we concluded that polyelectrolyte appears only partially reversible to changes in the solution conditions due the slow rearrangement process within the adsorbed layer.  相似文献   

19.
Oil-in-water emulsions (pH 7.0 or pH 3.0) containing 30 wt% soya oil and various concentrations of lactoferrin were made in a two-stage valve homogenizer. The average droplet size (d32), the surface protein coverage (mg/m2) and composition, and the zeta-potential of the emulsions were determined. The value of d32 decreased with increasing lactoferrin concentration up to 1%, and then was almost independent of lactoferrin concentration beyond 1% at both pH 7.0 and pH 3.0. The surface protein coverage of the emulsions made at pH 7.0 increased almost linearly with increasing lactoferrin concentration from 0.3 to 3%, but increased only slightly in emulsions made at pH 3.0 at lactoferrin concentrations >1%. The surface protein coverage of the emulsions made at pH 3.0 was lower than that of the emulsions made at pH 7.0 at a given protein concentration. The emulsion droplets had a strong positive charge at both pH 7.0 and pH 3.0, indicating that stable cationic emulsion droplets could be formed by lactoferrin alone. When emulsions were formed with a mixture of lactoferrin and beta-lactoglobulin (beta-lg) (1:1 by weight), the charge of the emulsion droplets was neutralized at pH 7.0 suggesting the formation of electrostatic complexes between the two proteins. The composition of the droplet surface layer showed that both proteins were adsorbed, presumably as complexes, from the aqueous phase at pH 7.0 in equal proportions, whereas competitive adsorption occurred between lactoferrin and beta-lg at pH 3.0. At this pH, beta-lg was adsorbed in preference to lactoferrin at low protein concentrations (1%), whereas lactoferrin appeared to be adsorbed in preference to beta-lg at high protein concentrations.  相似文献   

20.
The interaction between a phospholipid stabilized triglyceride emulsion and a hydrophilic silica surface has been studied at varying pH and electrolyte content using ellipsometry. The adsorbed amount decreases with pH and increases with increasing electrolyte content in the emulsion, and this can be rationalized on the basis of the electrostatic interaction between the emulsion droplet and the surface. The layer thickness, however, is essentially independent of these parameters.

In addition, the emulsion has been studied during turbulent shear conditions (applied mechanical stress), with the same variation of pH and electrolyte as in the adsorption experiments. A decrease in pH and an increase in electrolyte content, decreasing the repulsive interaction between the droplets, leads to a deterioration in emulsion stability with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号