首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To utilize housane-derived cation radicals as intermediates for the synthesis of the bicyclo (n.3.0) framework of natural products, a highly regioselective [1,2] shift of carbon to either a radical or an electron-deficient site is required. Herein we describe how this has been accomplished, provide a set of guidelines to assess housane oxidizability prior to its synthesis, and describe a synthesis of housane 18 that capitalizes upon the facility of [1,5] hydrogen shifts in substituted cyclopentadienes. The catalytic electrochemically mediated oxidation of 18 leads to a cation radical that engages in a rearrangement leading to the (4.3.0) adduct 23. The appearance of a catalytic current in the cyclic voltammogram of a solution containing the tris(aryl)amine and housane 18 is an excellent indicator that the amminium cation radical 14*+ is able to oxidize the housane and return the mediator to the original redox couple. DFT calculations show electron density on both the aryl and strained sigma framework in the HOMO of housane 18. From the spin density and electrostatic potential map for the cation radical, a picture where the spin resides on the side that is distal to the substituent emerges, while the hole is proximal to it. Both experiment and theory show that the rearrangement is best characterized as a [1,2] carbon shift toward an electron-deficient site and that migration toward the substituent-bearing carbon is much preferred over the alternative pathway.  相似文献   

2.
In context of an analysis of the effect of the central atom E of gaseous radical cations of phenyl pnictogens C(6)H(5)EH(2), E = N (1), P (2), and As (3), the mass spectrometric reactions of phenyl phosphane 2 have been re-investigated by D-labeling and by using methods of tandem mass spectrometry. The 70 eV mass spectrum of 2 shows the base peak for ion [M-2H](*+) and significant peaks for ions [M-H](+), [M-(2C,3H)](+), [M-PH] (*+), and [M-(C,P,2H)](+). Metastable 2(*+) fragments exclusively by loss of H(2), and the investigation of deuterated 2-d(2) shows that excessive H/D migrations occur before fragmentation. Other significant fragment ions in the mass spectrum of 2 arise by losses of C(2)H(2,) P, or HCP from the ion [M-H](+). This mass spectrometric behavior puts the radical cation 2(*+) in between the fragmentation reactions of aniline radical cation 1(*+) (loss of H and subsequent losses of C(2)H(2,) or HCN) and phenyl arsane radical cation 3(*+) (elimination of H(2) and loss of As from ion [M-H](+)). The fragmentation mechanisms of the radical cations 1(*+) -3(*+) and of related ions were analyzed by calculations of the enthalpy of relevant species at the stationary points of the minimum enthalpy reaction pathways using the DFT hybrid functionals UBHLYP/6-311+G(2d,p)//UBHLYP/6-311+G(d). The results show that, in contrast to ionized aniline 1(*+), the reactions of the derivatives 2(*+) and 3(*+) of the heavier main group elements P and As are characterized by an easy elimination of H(2)via a reductive elimination of group C(6)H(5)-E (E = P, As) and by a special stability of bicyclic isomers of 2(*+) and 3(*+). Thus, while 1(*+) rearranges by ring expansion and formation an 7-aza-tropylium cation by loss of H., the increased stability of bicyclic intermediates in the rearrangement of 2(*+) and in particular of 3(*+) results in separate rearrangement pathways. The origin of these effects is the more extended and diffuse nature of the 3p and 4p AO of P and As.  相似文献   

3.
Upon photochemical nitrogen extrusion, azoalkane 1b yields the diastereomeric housane products syn-2b (inversion) and anti-2b (retention), whose syn-to-anti isomerization (k(iso)) is observable already at room temperature. From the similar viscosity dependence of the k(inv)/k(ret) data for the photolysis of the azoalkane 1b and the k(iso) data for the thermolysis of the housane syn-2b, we conclude that these skeletal inversions are subject to frictional impediments and these determine the stereoselectivity.  相似文献   

4.
Oxidation of the tetraarylpinacols (Ar(2)COH)(2), 1a-e, in which Ar = C(6)H(5) (1a), 4-ClC(6)H(4) (1b), 4-MeC(6)H(4) (1c), 4-MeOC(6)H(4) (1d) and 4-Me(2)NC(6)H(4) (1e), by thianthrene cation radical (Th(*+)) in CH(3)CN and in CH(2)Cl(2) led quantitatively to the corresponding diaryl ketones Ar(2)C=O (2a-e), provided a sufficient amount of base, 2,6-di-tert-butyl-4-methylpyridine (DTBMP), was present to prevent presumed acid-catalyzed rearrangement. In the case of 1e, continued oxidation of 2e was also observed. Oxidation of 1a by (4-BrC(6)H(4))(3)N(*+)SbCl(6)(-) and (4-BrC(6)H(4))(3)N(*+)SbF(6)(-) (Ar(3)N(*+)) occurred analogously. Evidence for the catalytic, cation-radical rearrangement of 1a by Ar(3)N(*+) (reported in earlier literature) and by Th(*+) could not be found. Quantitative oxidation of 1a to 2a and of 1d to 2d was obtained also with NOBF(4), again provided that sufficient DTBMP was present to prevent acid-catalyzed rearrangement. Catalytic, oxidative rearrangement of 1d at room temperature and (as reported in earlier literature) at -5 degrees C was not observed. Oxidation was also observed of 2,3-diphenyl-2,3-butanediol (3) to acetophenone (9) and of 1,1-dimethyl-2,2-diphenylethanediol (4) to 2a and acetone by Th(*+). Oxidation of 2,3-dimethyl-2,3-butanediol (5) by Th(*+) was not observed. Instead, even in the presence of DTBMP, pinacolone (10) and tetramethyloxirane (11) were formed, through, it is proposed, a mechanism involving complexation with Th(*+).  相似文献   

5.
The fractional-power viscosity dependence of the product ratio [2]/[3] approximately eta(alpha(3)-alpha(2)) manifests the different free-volume requirements for the methylene (k(3) approximately eta(alpha)(3)) versus methyl (k(2) approximately eta(alpha)(2)) migrations. The syn/anti-conformational changes (k(1), k(-1)) in the radical cation 1(*+) proceed faster than the structural transformations (k(2), k(3)), which constitutes the first Curtin-Hammett case in radical-cation rearrangements.  相似文献   

6.
The electron-transfer-catalyzed rearrangement of the annelated housane 4a on treatment with tris(p-bromophenyl)aminium hexachloroantimonate (TBA(*)(+)SbCl(6)(-)) affords regioselectively the two isomeric olefins endo-5a and 6a by 1,2 migration of the two groups at the methano bridge. Acid-catalyzed rearrangement gives in addition to endo 5a and 6a also the regioisomer endo-7a as major product. The formation of both rearrangement products endo-5a and 6a suggests a planar conformation for the radical-cation and carbocation intermediates. The regioselectivity is rationalized in terms of electronic stabilization of the radical versus cationic sites by the substituent at the rearrangement termini in the radical-cation and carbocation intermediates. Of interest for preparative purposes, the annelated housane 4a leads under electron-transfer conditions to unusual triquinane-related olefins by means of an unprecedented synthetic pathway.  相似文献   

7.
The rearrangement of a series of housane-derived cation radicals was investigated. Surprisingly, 2-aryl-substituted systems rearranged regioselectively and in a process whose selectivity proved to be independent of the electronic character of para substituents. The major reaction pathway is suggested to be the one that allows maximum delocalization, and allows it to be maintained for as long as possible. Bridging is invoked to account for the regio- and stereoselectivity. When a nonbridging trimethylsilylmethyl substituent is appended to C2, the regioselectivity is eroded entirely. B3LYP/6-31G(d) calculations corroborate the notion that bridging plays a role. While bridging ought to stabilize an intermediate by allowing delocalization of the charge/spin, there should be an accompanying entropic penalty. To determine the relative importance of enthalpic and entropic factors in determining the product selectivity, the rearrangement of the p-methoxyphenyl-substituted housane was investigated as a function of temperature. Enthalpic factors dominated over the entire temperature range that was explored. Overall, the results indicate that it is possible to influence the direction of migration in housane-derived cation radical rearrangements even when the regiochemical control unit is not directly appended to the migration terminus. This finding suggests that there may be other substituents that can be placed at C2 that could do the same, perhaps more efficiently.  相似文献   

8.
New dibenzothiophene 2 fully annelated with bicyclo[2.2.2]octene units was synthesized and oxidized to stable radical cation salt 2(*+)SbCl(6)(-), whose structure was determined by X-ray crystallography. Although the intrinsic electronic structure of 2(*+) is predicted to be close to structure A, an interaction with the counteranion makes structure B contribute significantly. A part of the salt 2(*+)SbCl(6)(-) underwent rearrangement to arenium ion 6(+), whose structure was also clarified by X-ray crystallography.  相似文献   

9.
A computational study is undertaken to provide a unified picture for various rearrangement reactions and hydrogen scrambling pathways of the toluene radical cation (1). The geometries are optimized with the BHandHLYP density functional, and the energies are computed with the ab initio CCSD(T) method, in conjunction with the 6-311+G(d,p) basis set. In particular, four channels have been located, which may account for hydrogen scrambling, as they are found to have overall barriers lower than the observed threshold for hydrogen dissociation. These are a stepwise norcaradiene walk involved in the Hoffman mechanism, a rearrangement of 1 to the methylenecyclohexadiene radical cation (5) by successive [1,2]-H shifts via isotoluene radical cations, a series of [1,2]-H shifts in the cycloheptatriene radical cation (4), and a concerted norcaradiene walk. In addition, we have also investigated other pathways such as the suggested Dewar-Landman mechanism, which proceeds through 5, via two consecutive [1,2]-H shifts. This pathway is, however, found to be inactive as it involves too high reaction barriers. Moreover, a novel rearrangement pathway that connects 5 to the norcaradiene radical cation (3) has also been located in this work.  相似文献   

10.
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.  相似文献   

11.
The origin of the inversion stereoselectivity of housane formation via photochemical nitrogen extrusion of diazabicycloheptene (DBH) has been investigated using reaction path computations and multireference second-order perturbation theory within a CASPT2//CASSCF scheme. We show that the primary photoproduct of the reaction is an exo-axial conformer of the diazenyl diradical ((1) DZ) which displays a cyclopenta-1,3-diyl moiety with a Cs-like structure. (1) DZ is selectively generated via decay at a linear-axial conical intersection, and it is located in a shallow region of the ground state potential energy surface that provides access to five different reaction pathways. Reaction path analysis (including probing with classical trajectories) indicates that production of inverted housane can only occur via impulsive population of an axial-to-equatorial pathway, and it is thus inconsistent with thermal equilibration of the primary (1) DZ conformer. Similarly, according to the same analysis, the decrease of inversion stereoselectivity and even the retention (stereochemical memory effect) observed for suitably substituted DBHs are explained by dynamics effects where the axial-to-equatorial impulsive motion is restrained by the inertia and/or steric hindrance of the substituents. These results shade light on the poorly understood mechanisms that allow a photochemical reaction, in which a large amount of energy is deposited in the reactant by photon absorption, to show a high degree of stereoselectivity.  相似文献   

12.
The 1,2-nitroxyl and 1,2-acetoxyl rearrangement in beta-(nitroxy)vinyl and beta-(acetoxy)vinyl radicals 13a and 13b, respectively, has been studied for the gas phase with various ab initio and density functional methods. The energetically most favorable pathway for 13a is calculated to proceed via reversible fragmentation/radical addition through transition state I-19a. In the case of 13b, rearrangement through a five-membered ring transition state III-16b and the fragmentation/radical addition pathway via transition state I-19b are competing processes. Mulliken and natural population analysis reveal a certain degree of charge separation in III-16a/b that may indicate a potential solvent effect on the rearrangement rate. A stepwise group migration through a cyclic radical intermediate V-18a/b or rearrangement through a three-membered ring transition state II-15a/b can be ruled out for both vinyl radicals. A comparison of the results of the calculations with experimental findings provides important insights into the kinetics of "self-terminating radical oxygenations". A significant method dependence on the outcome of the calculations was observed, which revealed the unsuitability of the UHF, MP2, B3LYP, and mPW1PW91 methods for computing these radical rearrangement processes. The results from BHandHLYP/cc-pVDZ calculations showed the best agreement with single-point energy calculations performed at the QCISD and CCSD(T) levels of theory.  相似文献   

13.
The electron-transfer-catalyzed rearrangement of the housanes 5 affords regioselectively only the two cyclopentenes 6 (CH(3) migration) and 7 (R migration) by 1,2-migration of the two groups at the methano bridge to the methyl terminus. The 1,2-shift of the CH(3) group prevails, and the rearrangement ratio is essentially insensitive to the migratory aptitude of the R substituent. This stereochemical memory effect derives from the conformational impositions on the stereoelectronic requirements during the 1,2-migration in the 1,3-radical-cation intermediates. Similar regioselectivities and diastereoselectivities are observed for the TFA-catalyzed and silver(I)-ion-promoted rearrangements, whereas the rearrangement catalyzed by HClO(4) affords a complete reversal in the product selectivity and both the regioselectivity and the diastereoselectivity are much reduced. Migration to the phenyl terminus is favored to afford the 6' and 7' cyclopentenes, of which the former (CH(3) migration) dominates. For the minor regioisomer, only the cyclopentene 6 is formed by an exclusive 1,2-shift of the CH(3) group. This dichotomy in product selectivities is rationalized in terms of two distinct mechanisms for the various activation modes: a common one for the electron-transfer-induced, TFA-catalyzed, and silver(I)-ion-promoted rearrangements and a different one for HClO(4).  相似文献   

14.
Thermal 1,5-hydrogen (retro-ene) rearrangements of 1-silylmethylated 2-vinylcyclopropanes have been studied. cis-1-Silylmethyl-2-vinylcyclopropanes 17 and 19 undergo facile 1,5-hydrogen transposition upon mild thermolysis in benzene or toluene solution (80-110 degrees C) to give nearly quantitative yields of ring-opened 1-silyl-1,4-diene products. These reactions occur at temperatures at least 100 degrees C lower than those of the nonsilylated substrates. The silicon center and its ligands influence both the rate and stereoselectivity of diene formation, with the triphenylsilyl substrate providing the fastest reaction and highest (exclusive) stereoselectivity in forming the diene, regardless of the E/Z geometry of the vinylcyclopropane. The trimethylsilyl and triethoxysilyl compounds (19b and 19c) rearrange more slowly and with lower stereoselectivity. It is proposed that the rearrangement process takes place via a concerted suprafacial migration by one of two diastereotopic methylene hydrogens through a transition state having the silyl-carbon bond antiperiplanar to the breaking C-C bond of the cyclopropane ring. This conformational arrangement leads to weakening of the cyclopropane ring bond through orbital hyperconjugation, which facilitates the hydrogen transfer. The corresponding trans-1-silylmethyl-2-vinylcyclopropanes are thermally stable under these conditions. In contrast, cis-1-stannylmethyl-2-vinylcyclopropanes 19d,e undergo loss of the stannyl group at room temperature to afford a ring-opened 1,5-diene product 25 through a process that may take place by initial 1,5-stannyl migration.  相似文献   

15.
Excited-state properties of radical cations of substituted oligothiophenes ( nT (*+), n denotes the number of thiophene rings, n = 3, 4, 5) in solution were investigated by using various laser flash photolysis techniques including two-color two-laser flash photolysis. nT (*+) generated by photoinduced electron transfer to p-chloranil or resonant two-photon ionization (RTPI) by using the first 355-nm ns laser irradiation was selectively excited with the second picosecond laser (532 nm). Bleaching of the absorption of nT (*+) together with growth of a new absorption was observed during the second laser irradiation, indicating the generation of nT (*+) in the excited state ( nT (*+)*). The D 1 state lifetime was estimated to be 34 +/- 4, 24 +/- 2, and 18 +/- 1 ps for 3T (*+), 4T (*+), and 5T (*+), respectively. In the presence of hole acceptor (Q), bleaching of nT (*+) and growth of Q (*+) were observed upon selective excitation of nT (*+) during the nanosecond-nanosecond two-color two-laser flash photolysis, indicating the hole transfer from nT (*+)(D 1) to Q. Recovery of nT (*+) was also observed together with decay of Q (*+) because of regeneration of nT (*+) by hole transfer from Q (*+) to nT at the diffusion-limiting rate. It was suggested that the hole transfer rate ( k HT) from nT (*+)(D 1) to Q depended on the free-energy change for hole transfer (-Delta G = 1.41-0.46 eV). The estimated k HT faster than the diffusion-limiting rate can be explained by the contribution of the static quenching for the excited species in the presence of high concentration of Q (0.1-1.0 M).  相似文献   

16.
The unimolecular reactions of the radical cation of dimethyl phenylarsane, C6H5As(CH3)2, 1*+ and of the methyl phenylarsenium cation, C6H5As+CH3, 2+, in the gas phase were investigated using deuterium labeling and methods of tandem mass spectrometry. Additionally, the rearrangement and fragmentation processes were analyzed by density functional theory (DFT) calculations at the level UBHLYP/6- 311+G(2d,p)//UBHLYP/5-31+G(d). The molecular ion 1*+ decomposes by loss of a .CH3 radical from the As atom without any rearrangement, in contrast to the behavior of the phenylarsane radical cation. In particular, no positional exchange of the H atoms of the CH3 group and at the phenyl ring is observed. The results of DFT calculations show that a rearrangement of 1*+ by reductive elimination of As and shift of the CH3 group is indeed obstructed by a large activation barrier. The MIKE spectrum of 2+ shows that this arsenium cation fragments by losses of H2 and AsH. The fragmentation of the trideuteromethyl derivative 2-d3+ proves that all H atoms of the neutral fragments originate specifically from the methyl ligand. Identical fragmentation behavior is observed for metastable m-tolyl arsenium cation, m-CH3C6H4As+H, 2tol+. The loss of AsH generates ions C7H7+ which requires rearrangement in 2+ and bond formation between the phenyl and methyl ligands prior to fragmentation. The DFT calculations confirm that the precursor of this fragmentation is the benzyl methylarsenium cation 2bzl+, and that 2bzl+ is also the precursor ion fo the elimination of H2. The analysis of the pathways for rearrangements of 2+ to the key intermediate 2bzl+ by DFT calculations show that the preferred route corresponds to a 1,2-H shift of a H atom from the CH3 ligand to the As atom and a shift of the phenyl group in the reverse direction. The expected rearrangement by a reductive elimination of the As atom, which is observed for the phenylarsenium cation and for halogeno phenyl arsenium cations, requires much more activation enthalpy.  相似文献   

17.
Hybrid DFT calculations of the potential energy surface (PES) relative to the O-neophyl rearrangement of a series of ring-substituted 1,1-diarylalkoxyl radicals have been carried out at the UB3LYP/6-31G(d) level of theory. On the basis of the computational data, the rearrangement can be described as a consecutive reaction of the type a <--/--> b --> c (see above graphic), and the steady-state approximation could be applied in all cases to the intermediate b. The first-order rearrangement rate constants [kobs = k1k2/(k-1 + k2)] were thus obtained from the computed activation free-energies and were compared with the experimental rate constants measured previously in MeCN solution by laser flash photolysis. An excellent agreement is observed along the two series, which strongly supports the hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals proceeds through the formation of the reactive 1-oxaspiro [2,5]octadienyl radical intermediate. This is in contrast to previous hypotheses that involve either a long-lived intermediate or the absence of this intermediate along the reaction path. The calculated rearrangement free-energies decrease upon going from the methoxy-substituted radical (Delta G degrees = -16.4 kcal x mol-1) to the nitro-substituted one (Delta G degrees = -21.8 kcal x mol-1), which follows a trend that is similar to the one observed for the CAr-O bond dissociation enthalpies (BDEs) of ring-substituted anisoles. This evidence indicates that in the O-neophyl rearrangement the effect of ring substituents on the strength of the newly formed CAr-O bond plays an important role.  相似文献   

18.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

19.
The rearrangement of the cubane radical cation (1*+) was examined both experimentally (anodic as well as (photo)chemical oxidation of cubane 1 in acetonitrile) and computationally at coupled cluster, DFT, and MP2 [BCCD(T)/cc-pVDZ//B3LYP/6-31G* ZPVE as well as BCCD(T)/cc-pVDZ//MP2/6-31G* + ZPVE] levels of theory. The interconversion of the twelve C2v degenerate structures of 1*+ is associated with a sizable activation energy of 1.6 kcalmol(-1). The barriers for the isomerization of 1*- to the cuneane radical cation (2*+) and for the C-C bond fragmentation to the secocubane-4,7-diyl radical cation (10*+) are virtually identical (deltaH0++ = 7.8 and 7.9 kcalmol(-1), respectively). The low-barrier rearrangement of 10*+ to the more stable syn-tricyclooctadiene radical cation 3*+ favors the fragmentation pathway that terminates with the cyclooctatetraene radical cation 6*+. Experimental single-electron transfer (SET) oxidation of cubane in acetonitrile with photoexcited 1,2,4,5-tetracyanobenzene, in combination with back electron transfer to the transient radical cation, also shows that 1*+ preferentially follows a multistep rearrangement to 6*+ through 10*+ and 3*+ rather than through 2*+. This was confirmed by the oxidation of syn-tricyclooctadiene (3), which, like 1, also forms 6 in the SET oxidation/rearrangement/electron-recapture process. In contrast, cuneane (2) is oxidized exclusively to semibullvalene (9) under analogous conditions. The rearrangement of 1*+ to 6*+ via 3*+, which was recently observed spectroscopically upon ionization in a hydrocarbon glass matrix, is also favored in solution.  相似文献   

20.
The photochemical denitrogenation of the cyclopentene-annelated DBH-type azoalkanes 1 has been examined in solution as a function of bridgehead substitution and temperature. For all derivatives, namely, the unsubstituted 1a(H/H), monomethyl 1b(Me/H) dimethyl 1c(Me/Me), monophenyl 1d(Ph/H), and diphenyl 1e(Ph/Ph), the temperature-dependent ratio of syn and anti housanes 2 provides experimental support for a competition between the singlet (high temperature) and triplet (low temperature) reaction channels in the direct photolysis. The syn/anti ratio of the housanes 2 depends on the extent and type of bridgehead substitution; the amount of the anti diastereomer (retention) follows the order Ph > Me > H, and double substitution is more effective than single. This stereochemical memory is interpreted in terms of the mass effect (inertia) of the substituents and steric interaction (size) between the substituents at the bridgehead and the methylene bridge during the deazetation step of the transient diazenyl diradical conformations (1)DZ (exo-ax) and (1)DZ (exo-eq). These conformers are impulsively generated upon decay of the (1)(n,pi)-excited azoalkane, a trajectory assessed through computational work. The new mechanistic feature disclosed by the unprecedented anti stereoselectivity (retention) is the intervention of a puckered 1,3-cyclopentanediyl singlet diradical (1)DR as product bifurcation step, whose conformational relaxation to the planar species (loss of stereochemical memory) is encumbered by bridgehead substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号