首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface modification of titanium thin foil/sheet samples (0.5 mm) implanted by nitrogen ions of 30 keV energy and a fluence of 1 × 1018 N+ cm−2 at different temperatures is studied using XRD, AFM, SEM, and SIMS. XRD patterns showed the development of titanium nitride with different compositions in the implanted samples, while the presence of different titanium compositions such as titanium oxides was also observed. AFM images at 654 K showed the formation of grains, that after initial sputtering of the grain boundary at 728 K temperature, the morphology of the surface changed from small grains to a bimodal distribution of grains at 793 K which consisted of larger grains with bright hillocks within them. This was considered to be due to phase transformation/compositional changes, explained by correlating XRD and SIMS results. The SIMS results showed a maximum at about 730 K and a minimum at about 790 K for both N+ density and depth of N+ penetration in the Ti sample. The variation of these results with temperature was explained on the basis of the residual gas, substrate temperature, dissociation of water in the chamber and the gettering property of titanium.  相似文献   

2.
Interactions of a transversely excited atmospheric (TEA) CO2 laser and an excimer XeCl laser, pulse durations ∼2 μs (initial spike FWHM ∼100 ns) and ∼20 ns (FWHM), respectively, with polycrystalline titanium nitride (TiN) coating deposited on high quality steel AISI 316, were studied. Titanium nitride was surface modified by the laser beams, with an energy density of 20.0 J/cm2 (TEA CO2 laser) and 2.4 J/cm2 (XeCl laser), respectively. The energy absorbed from the CO2 laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of the molten material, shock waves, etc. The energy from the excimer XeCl laser primarily leads to fast and intense target evaporation. The calculated maximum temperatures on the target surface were 3770 and 6300 K for the TEA CO2 and XeCl lasers, respectively. It is assumed that the TEA CO2 laser affects the target deeper, for a longer time than the XeCl laser. The effects of the XeCl laser are confined to a localized area, near target surface, within a short time period.Morphological modifications of the titanium nitride surface can be summarized as follows: (i) both lasers produced ablation of the TiN coating in the central zone of the irradiated area and creation of grainy structure with near homogeneous distribution; (ii) a hydrodynamic feature, like resolidified droplets of the material, appeared in the surrounding peripheral zone; (iii) the process of irradiation, in both cases, was accompanied by appearance of plasma in front of the target.Target color modifications upon laser irradiation indicate possible chemical changes, possibly oxidation.  相似文献   

3.
Thermal stability of iron nitrides prepared by mixing laser and plasma beam nitriding (LPN) technology was studied. The treated samples were annealed in vacuum at different temperature from 473 K to 1273 K. The phases were detected by X-ray diffraction (XRD), the nitride’s contents were calculated from the patterns of XRD, and the microstructures were analyzed by scanning electron microscope (SEM). Three critical temperatures (473 K, 673 K, and 1273 K) are found. Due to deeper nitriding layer in the LPN sample, the nitrides is more stable than that in laser-produced sample at the annealing temperature higher than 973 K. It is important and central for some potential industrial productions and applications.  相似文献   

4.
Ta2O5 films were deposited by conventional electron beam evaporation method and then annealed in air at different temperature from 873 to 1273 K. It was found that the film structure changed from amorphous phase to hexagonal phase when annealed at 1073 K, then transformed to orthorhombic phase after annealed at 1273 K. The transmittance was improved after annealed at 873 K, and it decreased as the annealing temperature increased further. The total integrated scattering (TIS) tests and AFM results showed that both scattering and root mean square (RMS) roughness of films increased with the annealing temperature increasing. X-ray photoelectron spectroscopy (XPS) analysis showed that the film obtained better stoichiometry and the O/Ta ratio increased to 2.50 after annealing. It was found that the laser-induced damage threshold (LIDT) increased to the maximum when annealed at 873 K, while it decreased when the annealing temperature increased further. Detailed damaged models dominated by different parameters during annealing were discussed.  相似文献   

5.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

6.
Titanium films of 80 nm thickness were deposited on stainless steel type 304, and they were post-annealed under flow of oxygen at different temperatures. The prepared samples were corrosion tested in 1.0 M H2SO4 solution using potentiodynamic and galvanometric polarization technique. The variation of corrosion resistance of these samples showed that the optimum annealing temperature is 473 K. The reduction of corrosion resistance of the sample with increasing the temperature above 473 K is attributed to the phenomena which are confirmed by AFM results: (a) increase of surface roughness, and (b) formation of larger grains with large grooves between them on the film surface. Hence larger effective surfaces for chemical reactions are provided. The films’ crystallographic and morphological structures were analysed using XRD and AFM, respectively before corrosion test and SEM after corrosion test. It is observed that the crystallographic structure of the film goes through a sudden change at 943 K annealing temperature and three phases of titanium oxide (i.e., rutile, anatase and brookite) are formed.  相似文献   

7.
The crystallization of silicon rich hydrogenated amorphous silicon carbon films prepared by Plasma Enhanced Chemical Vapor Deposition technique has been induced by excimer laser annealing as well as thermal annealing. The excimer laser energy density (Ed) and the annealing temperature were varied from 123 to 242 mJ/cm2 and from 250 to 1200 °C respectively. The effects of the two crystallization processes on the structural properties and bonding configurations of the films have been studied. The main results are that for the laser annealed samples, cubic SiC crystallites are formed for Ed ≥ 188 mJ/cm2, while for the thermal annealed samples, micro-crystallites SiC and polycrystalline hexagonal SiC are observed for the annealing temperature of 800 and 1200 °C respectively. The crystallinity degree has been found to improve with the increase in the laser energy density as well as with the increase in the annealing temperature.  相似文献   

8.
Comprehensive and systematic optical activation studies of Si-implanted GaN grown on sapphire substrates have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 to 5×1015 cm−2 at room temperature. The samples were proximity cap annealed from 1250 to 1350 °C with a 500-Å-thick AlN cap in a nitrogen environment. The results of photoluminescence measurements made at 3 K show a very sharp neutral-donor-bound exciton peak along with a sharp donor-acceptor pair peak after annealing at 1350 °C for 20 s, indicating excellent implantation damage recovery. The results also indicate the AlN cap protected the implanted GaN layer very well during high temperature annealing without creating any significant anneal-induced damage. This observation is consistent with the electrical activation results for these samples.  相似文献   

9.
We report on the growth and characterization of gold nitride thin films on Si 〈1 0 0〉 substrates at room temperature by reactive pulsed laser ablation. A pure (99.95%) Au target was ablated with KrF excimer laser pulses in nitrogen containing atmosphere (N2 or NH3). The gas ambient pressure was varied in the range 0.1-100 Pa. The morphology of the films was studied by using optical, scanning electron and atomic force microscopy, evidencing compact films with RMS roughness in the range 3.6-35.1 nm, depending on the deposition pressure. Rutherford backscattering spectrometry and energy dispersion spectroscopy (EDS) were used to detect the nitrogen concentration into the films. The EDS nitrogen peak does not decrease in intensity after 2 h annealing at 250 °C. Film resistivity was measured using a four-point probe and resulted in the (4-20) × 10−8 Ω m range, depending on the ambient pressure, to be compared with the value 2.6 × 10−8 Ω m of a pure gold film. Indentation and scratch measurements gave microhardness values of 2-3 GPa and the Young's modulus close to 100 GPa. X-ray photoemission spectra clearly showed the N 1s peak around 400 eV and displaced with respect to N2 phase. All these measurements point to the formation of the gold nitride phase.  相似文献   

10.
In this paper we describe an approach for the formation of composite layers on the surface of refractory metals. We show that laser radiation on refractory metals (Ti, V, Zr, Mo, Hf, Ta, and W) immersed in liquid nitrogen can provide a chemical synthesis of nitride phases on the surface of metals. The metals were subjected to pulsed laser radiation with a wavelength of 1.06 μm. The power density ranged from 104 to 109 W cm−2. The synthesis of nitrides began with the formation of MexNy (x > y) phases with low contents of nitrogen. When the melting point was reached at the metal surface, the quantity of MeN phases increased sharply. Study of the melting zone showed that it contained a non-uniform distribution of nitride phases. The quantity of nitrides was a maximum on the surface and decreased with the increase of the depth of melting zone. Due to the high-cooling rates, titanium nitride crystallized in the form of columns. Maximum microhardness in the Ti surface layer was up to 20,000 MPa.  相似文献   

11.
Surface nitriding of the titanium by the mixing technology with laser and plasma (LPN) in atmosphere has been investigated. Comparing with the technique of laser nitriding, we could obtain the titanium nitride at relatively low laser power density and the oxidation was prevented without the chamber. The synthesized layers comprised of titanium nitrides were about 178 μm depth. The effect of the laser power density, scanning velocity, and plasma flow rate on the components consisting of the material of the nitrided layer was studied. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to reveal the components consisting of the material of the nitrided layer.  相似文献   

12.
Fluorescence and efficient persistent spectral hole burning of Eu3+ at 77 K were observed in chalcohalide glasses. The depth of the hole was approximately 30% after a burning process of 1 min with 50 mW power, and it was completely erased with Ar+ laser irradiation. The hole survived room temperature heat treatment and showed good thermal stability. The hole-burning mechanism was most probably the photo-reduction of Eu3+→Eu2+. Fluorescence from Eu3+ decreased with increasing temperature and disappeared at the temperature above ∼130 K.  相似文献   

13.
Pulsed laser deposition of 250-nm thick, amorphous Dy2Fe14B layers on 40-μm thick Nd2Fe14B melt-spun ribbons was conducted to improve coercivity and energy product. The coated ribbons were subsequently annealed by two methods: (1) furnace annealing in an inert-gas controlled quartz furnace using tantalum foil at 1173 K for 2 h; (2) laser annealing using a continuous wave CO2 laser with power varying from 10 to 20 W for 0.2 s (estimated temperatures using a thermal model were 993-1528 K). X-ray diffraction was used to identify the microstructural phases and grain size. Magnetic hysteresis tests were conducted at 300 K using a SQUID magnetometer with a maximum field of 5.0 T. Results showed a 10% increase in coercivity and 30% increase in energy product in coated over uncoated samples that were furnace-annealed. However, the coated and laser-annealed samples exhibited soft magnetic behavior with almost zero coercivity. The incomplete crystallization of amorphous phase and precipitation of α-Fe during laser annealing are found to be responsible for the observation of poor magnetic performance.  相似文献   

14.
In this paper we determine the features of the thermophysical processes involved in the interaction of laser radiation with metals that have cryogenic temperature. To do so, we use a one-dimensional model that involves heating a semi-infinite solid by a point thermal source with a constant flux density. Temperature fields, heating and cooling rates in the laser-irradiated zone for iron and titanium at the ambient temperatures of 77 (liquid nitrogen), 293 and 573 K were calculated. The intensity of the laser irradiation enabled the melting temperatures of 1933 K and 1812 K on the Ti and Fe surface, respectively, to be reached. The duration of the laser pulse was 4.5 ms. We show that a drop in ambient temperature from 573 to 77 K leads to a rise in cooling rate from 3.25 × 103 and 6.4 × 106 K/s to 4.25 × 103 and 1.3 × 107 K/s in the Ti and Fe targets, respectively. Agreement was good between the calculated depths of melting and phase transformation isotherms and the experimental depths of the interfaces of melting and heat-affected zones.  相似文献   

15.
HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm2, but it is increased to 8.98 J/cm2 after annealing under temperature of 200 °C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization.  相似文献   

16.
We present the deposition of aluminum nitride (AlN) thin film by KrF excimer laser sputtering and the study of the effects of substrate temperature and laser fluences. Deposition rate of AlN thin film at 0.3 Å/pulse has been achieved with laser fluence of 1500 mJ/cm2 and at substrate temperature of 250 K, and this shows the enhancement of the deposition rate at low substrate temperature. Surface morphology of the deposited films is characterized by atomic force microscopy (AFM). In addition, the electrical performance of the MIS devices with AlN thin films prepared in this experiment has been characterized.  相似文献   

17.
对注入Ar+后不同晶面取向的蓝宝石晶体在不同退火条件下的光致发光谱进行了分析.分析结果表明:三种晶面取向的蓝宝石样品经Ar+注入后,其光致发光谱中均出现了新的位于506nm处的发光峰;真空和空气气氛下的退火均对样品在506nm处的发光有增强作用,不同晶面取向的样品发光增强程度不同,且发光增强至最大时的退火温度也不同,空气气氛下的退火使样品发光增强程度更为显著.由此可以看出,退火气氛、退火温度和晶面取向均对样品发光峰强度有影响. 关键词: 2O3')" href="#">Al2O3 离子注入 退火 光致发光谱  相似文献   

18.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

19.
The importance of doping ZnO with magnetic ions is associated with the fact that this oxide is a good candidate for the formation of a magnetic-diluted semiconductor. Most of the studies reported in Co-doped ZnO were carried out in thin films, but the understanding of the modification of the magnetic behaviour due to doping demands the study of single-crystalline samples. In this work, ZnO single crystals were doped at room temperature with Co by ion implantation with fluences ranging between 2×1016 and 1×1017 ions cm−2 and implantation energy of 100 keV. As implanted samples show a superparamagnetic behaviour attributed to the formation of Co clusters, room temperature ferromagnetism is attained after annealing at 800 °C, but no magnetoresistance was detected in the temperature range from 10 to 300 K.  相似文献   

20.
Tantalum nitride films (TaN) were synthesized by microwave ECR-DC sputtering. The effects of deposition and annealing temperature on mechanical properties of TaN films were investigated. Cross-section pattern, microstructure and binding energy of the films were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Mechanical properties were evaluated using nano-indentation and scratch tester. The results showed that the maximal hardness value of approximately 40 GPa was deposited in the TaN sample at 573 K. While the preparation temperature decreased, the hardness, modulus and adhesion of TaN film also decreased. Hardness and modulus also decreased with the increase in annealing temperature. Meanwhile the adhesion strength was also sensitive to the annealing temperature, with a maximum adhesion strength of 40 N measured in the TaN film annealed at 448 K. The results demonstrated that a desirable mechanical property of TaN films deposited by DC reactive magnetron sputtering can be obtained by controlling the deposition and annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号