首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.  相似文献   

2.
Ni, Ag, and Pt-based Al-doped ZnO (AZO) films have been deposited as transparent conductivity layers on quartz by RF magnetron sputtering and characterized by X-ray diffraction, Hall measurement, optical transmission spectroscopy, scanning electron microscopy (SEM). The deposition of thicker metal layer in double layers resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. A film consisting of AZO (250 nm)/Ni (2 nm) double structure, exhibits a sheet resistance of 21.0 Ω/sq, a high transmittance of 76.5%, and characterize good adhesion to substrate. These results make the satisfactory for GaN-based light-emitting diodes (LEDs) and solar cells with metal-based AZO double films as current spread layers.  相似文献   

3.
Methoxy Ge Triphenylcorrole [Ge(TPC)OCH3] has been recently synthesized and deposited as thin film by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. In the last few years, corroles have been the object of an increasing number of studies and MAPLE technique seems to be a very promising deposition method for organic and polymeric films, producing good results for applications in chemical gas sensing layers production. In this work Ge(TPC)OCH3 thin films were deposited by both spin coating and MAPLE techniques for comparison. The morphology of the films was investigated by Atomic Force Microscopy (AFM), while their optical properties were analyzed by photoluminescence (PL) and UV-vis absorption measurements and were compared with the ones of the starting solution. The film absorption spectrum presented the same peaks with the same relative intensities of that recorded in solution. The luminescence spectra were acquired periodically to evaluate the aging effects and no detectable variations were recorded over a period of 1 month.  相似文献   

4.
The growth and structure of Co ultra-thin films on Pd(111) and Cr on Co/Pd(111) have been analyzed by grazing incidence X-ray diffraction and low energy electron diffraction. It is shown that the in-plane lattice constant of the epitaxial Co film depends on the growth temperature. Although the strain decreases as a function of the Co film thickness, it persists for 20 monolayer (ML) films or even thicker. When Cr is deposited at room temperature on a strained Co film (10 to 20 ML thick) a Kurdjumov–Sachs epitaxial relationship is observed, whereas when Cr is deposited on a Co(0001) single-crystal or on a very thick Co film on Pd(111), a Nishyama–Wassermann orientation is obtained.  相似文献   

5.
Experimental results are presented on Raman scattering in graphite films produced by DC plasmaenhanced chemical vapor deposition from a methane-hydrogen gas mixture. Scanning electron and probe microscopy data show that, depending on substrate material and deposition time, the deposited film is either a mesoporous material consisting of graphite nanocrystallites with basal planes oriented perpendicular to the substrate surface or an atomically flat, nanometer-thick stack of graphene layers parallel to the substrate. A comparative Raman spectroscopy analysis is performed for film samples deposited on nickel and silicon substrates for 5 and 60 min, as well as for highly ordered graphite samples. The Raman spectra of the examined samples correspond to the double resonant scattering mechanism. The behavior of Raman peak position and intensity as functions of excitation wavelength suggests a high degree of structural order in the graphite films deposited on nickel for 5 min. The results obtained are used to show that the thickness of these films is 1.5 ± 0.5 nm.  相似文献   

6.
Thick silicon films were deposited by plasma-enhanced chemical vapor deposition at different plasma power densities. Annealing treatment was performed on these deposited films. As-deposited and annealed films were characterized by X-ray diffraction, Raman scattering spectroscopy and reflectance spectroscopy. Before annealing, only the film deposited at the plasma power density of 500 mW/cm2 exhibits a diffraction peak corresponding to the (111) plane orientation. Raman spectrum of this film confirms the presence of crystalline phase. After annealing, a transition from amorphous phase to crystalline one occurs for all samples. This transition is accompanied by an increase of the crystalline fraction volume deduced from Raman spectra analysis and by a reduction of optical gap energy.  相似文献   

7.
Mg-Ni multilayer films with sequential Mg and Ni layers were prepared by direct current magnetron sputtering. The substrate temperature influences the microstructure of the films greatly. The film deposited at 298 K exhibits multilayered structure, while the film shows nanocrystalline/amorphous composite structure at the deposition temperature of 473 K. The optical properties between hydrogenation/dehydrogenation states of the films were performed using spectrophotometer in visible light region. The film deposited at 473 K can switch from mirror-like metallic state towards brownish yellow transparent state under 0.6 MPa H2 at 298 K, and the optical transmittance modulation reaches up to 20% both at a wavelength of 770 nm and IR region, while the film deposited at 298 K exhibits low optical change, and the optical switching behavior can hardly be found. The extra free energy stored in the boundary of the nanocrystallines benefits the formation of magnesium-based hydride, resulting in the enhancement of the optical switching properties of the Mg-Ni film deposited at 473 K.  相似文献   

8.
The UV-light-induced hydrophilicity of amorphous titanium dioxide thin films obtained by radio frequency magnetron sputtering deposition was studied in relation with film thickness. The effect of UV light irradiation on the film hydrophilicity was fast, strong and did not depend on substrate or thickness for films thicker than a threshold value of about 12 nm, while for thinner films it was weak and dependent on substrate or thickness. The weak effect of UV light irradiation observed for the ultra-thin films (with thickness less than 12 nm) is explained based on results of measurements of surface topography, UV-light absorption and photocurrent decay in vacuum. Comparing to thicker films, the ultra-thin films have a smoother surface, which diminish their real surface area and density of defects, absorb partially the incident UV light radiation, and exhibit a longer decay time of the photocurrent in vacuum, which proves a spatial charge separation. All these effects may contribute to a low UV light irradiation effect on the ultra-thin film hydrophilicity.  相似文献   

9.
薄膜材料的生长过程随镀膜机尺寸的增大而呈现新的规律,为制备膜层均匀性好、材料均质的大尺寸光学元件,分别在不同离子源能量、沉积压强、基板加热温度及基板转速条件下,采用离子辅助电子束蒸发方法制备了不同单层SiO2薄膜样品;利用分光光度计及椭偏仪分别对样品的透过率及椭偏参数进行测量,并对测量结果进行拟合得到不同样品的折射率及非均质特性。实验结果表明,工件架转速是使大尺寸SiO2薄膜材料产生非均质特性的主要影响因素,离子源能量、基板温度、沉积压强通过影响材料生长过程对材料的非均质特性产生调控;对于大尺寸薄膜光学元件,工件架转速存在限制的条件下,优化其他工艺参数可以获得均质SiO2薄膜材料,该结果对于制备具有优良性能的大尺寸薄膜光学元件具有借鉴意义。  相似文献   

10.
Carbon films are fabricated for the first time using an inexpensive and ecologically safe modified method of close space sublimation at atmospheric pressure. They are deposited onto quartz, glass, glass ceramic (Pyroceram), and silicon substrates. The main properties of the films (such as the growth rate, morphology and structure, optical properties, the dependences of these properties on the deposition temperature and the substrate material) are studied by X-ray diffraction, atomic force microscopy, multiangular ellipsometry, and the measurement of transmission and reflectance spectra in the visible and near ultraviolet regions. The growth rate is 5 nm/min at a film nucleation temperature of 800°C. The film thickness varies from 0.2 to 2.2 μm, and the minimum surface roughness is 0.5 nm. The refractive indices of the films range from 1.3 to 1.8 depending on the growth and subsequent heat treatment conditions. The optical energy gap is 5.4 eV.  相似文献   

11.
Optical, structural and morphological properties of thin films of polyparaphenylenevinylene (PPV) formed by an alkyl sulfinyl precursor route have been studied. Thin films were fabricated on an optical glass and on quartz glass either by spin-coating of the precursor solution or by layer-by-layer deposition using Langmuir–Blodgett technique. PPV precursor films were also spin-coated on gold-coated glass in order to study thin-film optical parameters by surface plasmon spectroscopy. We have been successful in forming about 40 precursor mono layers on quartz glass by Langmuir–Blodgett technique using optimized surface pressure and dipping conditions. After thermal conversion of the precursor layers good quality fluorescent PPV films of yellow colour have been obtained. Optical characterization of the films was carried out by linear absorption and emission spectroscopy, ellipsometry, and surface plasmon spectroscopy. Structural and morphological studies on the thin films were carried out by using X-ray scattering and atomic force microscopy. Wave-guided travelling-wave laser action has been achieved in a PPV film on quartz glass. The sample was transversally pumped with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). Laser emission occurred at 550 nm for pump pulse energy densities above .  相似文献   

12.
Ba(Zn1/3Ta2/3)O3, (BZT), is a high-k and low loss dielectric resonator material which finds applications in the area of microwave communication and related areas. While there are reports on its bulk properties, there is hardly any report on its thin films. We report here preparation of thin films of BZT deposited on to borosilicate and quartz substrates using the pulsed laser deposition (PLD) technique under different oxygen mixing percentage (OMP) and preliminary studies on their structural and optical properties. The EDAX spectra show that the deposited films exhibit the composition of the target. As-deposited films, whether on a glass or quartz substrate, were found to be amorphous. The refractive index and energy bandgap of the films were found to be around 1.5 in the dispersion free region (500–1500 nm) and 5.2–5.5 eV, respectively. The Dynamic Force Microscopy (DFM) study of the BZT films exhibited columnar growth and films deposited at higher OMPs showed the smaller grain size.  相似文献   

13.
采用对靶磁控反应溅射技术,以氢气作为反应气体在不同的氢稀释比条件下制备了氢化非晶硅薄膜.利用台阶仪、傅里叶红外透射光谱、Raman谱和紫外-可见光透射谱测量研究了不同氢稀释比对氢化非晶硅薄膜生长速率和结构特性的影响.分析结果发现,利用对靶磁控溅射技术能够实现低温快速沉积高质量氢化非晶硅薄膜的制备.随着氢稀释比不断增加,薄膜沉积速率呈现先减小后增大的趋势.傅里叶红外透射光谱表明,氢化非晶硅薄膜中氢含量先增大后变小.而Raman谱和紫外-可见光透射谱分析发现,氢稀释比的增加使氢化非晶硅薄膜有序度和光学带隙均先增大后减小.可见,此技术通过改变氢稀释比R能够实现氢化非晶硅薄膜结构的有效控制.  相似文献   

14.
CdIn2S4 thin films were prepared by pulse electrodeposition technique over F:SnO2 glass and stainless steel substrates in galvanostatic mode from an aqueous acidic bath containing CdSO4, InCl3 and Na2S2O3. The growth kinetics of the film has been studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current and pH of the bath are optimized. X-ray diffraction (XRD) analysis of the as deposited and annealed films shows polycrystalline nature. Energy dispersive analysis by X-ray (EDAX) confirms nearly stoichiometric CdIn2S4 nature of the film. Scanning electron microscope (SEM) studies show that, the deposited films are well adherent and grains are uniformly distributed over the surface of the substrate. The optical transmission spectra show a direct band gap of 2.16 eV. Conductivity measurements have been carried out at different temperatures and electrical parameters such as activation energy, trapped energy state and barrier heights etc. have been determined.  相似文献   

15.
To meet challenges for a smaller transistor feature size, ultra-thin HfO2 high-k dielectric has been used to replace SiO2 for the gate dielectric. In order to accurately analyze the ultra-thin HfO2 films by grazing incidence X-ray reflectivity (GIXRR), an appropriate material model with a proper layer structure is required. However, the accurate model is difficult to obtain, since the interfaces between layers of the ultra-thin HfO2 films are not easily identified, especially when post-deposition annealing process is applied. In this paper, 3.0 nm HfO2 films were prepared by atomic layer deposition on p-type silicon wafer, and annealed in Ar environment with temperatures up to 1000 °C. The layer structures and the role of the interfacial layer of the films in the post-deposition annealing processes were evaluated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The experimental results and analysis showed that layer thicknesses, crystal phases and chemical structures of the ultra-thin HfO2 films were significantly dependent on annealing temperatures. The binding energy shifts of Hf 4f, O 1s, and Si 2p elements revealed the formation of Hf silicate (Hf-O-Si bonding) with increasing annealing temperatures. Due to the silicate formation and increasing silicon oxide formation, the interface broadening is highly expected. The structure analysis of the GIXRR spectra using the modified material structure model from the XPS analysis confirmed the interfacial broadening induced by the post-deposition annealing.  相似文献   

16.
In this work, poly(3‐octylthiophene) (P3OT) films were synthesized electrochemically in non‐aqueous media through the oxidation of the monomer, (3‐octylthiophene), using a standard three‐electrode cell in acetonitrile with 0.05 mol L?1 LiClO4 or 0.05 mol L?1 Et4NBF4. The polymeric films were deposited on fluorine tin oxide (FTO). The partial dedoping was obtained in NH4OH solution, providing a good chemical stability of the formed material. The films obtained through this method have been characterized by Fourier‐transform infrared spectroscopy (FT‐IR), electron paramagnetic resonance (EPR), UV–Vis absorption, and photoluminescence (PL) spectroscopy. The FT‐IR and EPR spectra together gave the results that led to characterization of two structures (pristine and non‐pristine forms of thiophene rings) while forming the P3OT polymer chain. These results were associated with the stabilization of pristine chains and mixed chains (non‐pristine structures) in the polymeric film. Their bands in the PL spectra are wide and asymmetric and their adjustments by Gaussian functions was necessary; this was the main indication that there are two distinct contributions to the emission spectra. These two contributions are attributed to the emission by mixed chains (Gaussian centered at higher energy) and by pristine chains (Gaussian of lower energy) present in the formed polymeric material. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
利用金属有机化学气相沉积(MOCVD)法,在Si衬底上外延生长ZnO薄膜。为了改善氧化锌薄膜的质量,首先在Si衬底上生长低温ZnO缓冲层,然后再生长高质量的ZnO薄膜。通过XRD、SEM、光致发光(PL)光谱的实验研究,发现低温ZnO缓冲层可有效降低ZnO薄膜和Si衬底之间的晶格失配以及因热膨胀系数不同引起的晶格畸变。利用低温缓冲层生长的ZnO薄膜的(002)面衍射峰的强度要比直接在Si上生长的ZnO薄膜样品的高,并且衍射峰的半高宽也由0.21°减小到0.18°,同时有低温缓冲层的样品室温下的光致发光峰也有了明显的增高。这说明利用低温缓冲层生长的ZnO薄膜的结晶质量和光学性质都得到了明显改善。  相似文献   

18.
Zinc oxide (ZnO) thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer using RF magnetron sputtering and a sol-gel method. The post-deposition annealing was performed on ZnO thin films prepared using both methods. The formation of ZnO piezoelectric thin films with less residual stress was due to a close lattice mismatch of the ZnO and SiC layers as obtained by the sputtering method. Nanocrystalline, porous ZnO film prepared using the sol-gel method showed strong ultraviolet UV emission at a wavelength of 380 nm. The 3C-SiC buffer layer improved the optical and piezoelectric properties of the ZnO film produced by the two deposition methods. Moreover, the different structures of the ZnO films on the 3C-SiC intermediate layer caused by the different deposition techniques were also considered and discussed.  相似文献   

19.
采用原子层沉积技术(ALD),以二乙基锌和水为前驱体,在衬底温度分别为110和190 ℃的条件下制备了致密的氧化锌纳米薄膜。采用X射线光电子能谱,荧光光谱和椭偏仪等表征手段对薄膜的成分和光学性质进行了研究。结果表明,随着沉积温度的增加,氧化锌薄膜内—OH含量降低,说明氧化锌薄膜生长过程中的化学反应更加完全;另外,沉积温度增加后,薄膜在365 nm处的激子发射峰出现了明显的增强,同时可见光区的荧光发射峰消失,表明薄膜内的缺陷态减少。随着成膜质量的提高,氧化锌薄膜的电子迁移率从25提高至32 cm2·(V·S)-1。椭偏测量的拟合结果表明,在375~800 nm的波长范围内,氧化锌薄膜的折射率逐渐从2.33降至1.9,呈现出明显的色散现象;另外,不同温度下制备的氧化锌薄膜光学带隙均为3.27 eV左右,这说明沉积温度对薄膜的带隙没有明显影响。  相似文献   

20.
In this work, we extracted the film's hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30-100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the HF values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have HF values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have HF values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp2 clusters does not relate directly to the hardness of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号