首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Different sizes of ZnWO4 photocatalysts were synthesized by a hydrothermal method. The as-prepared sample shows highly efficient photocatalytic activity for the degradation of RhB under UV irradiation, which significantly vary with the increase of the hydrothermal temperatures. Surface photovoltage spectrum (SPS), field-induced surface photovoltage spectrum (FI-SPS) and surface photovoltage transient (TPV) techniques are used to investigate the detailed photoinduced charge transfer behavior. Results indicate that the ZnWO4 synthesized at 413 K possess the largest BET surface area and the abundant donor surface states which are assumed to inhibit the recombination of the photogenerated electron-hole pairs, and thus a significant enhancement in the reaction rate is observed.  相似文献   

2.
ZnO nanostructures were synthesized through arc discharge of zinc electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the prepared nanostructures indicates formation of crystalline ZnO of hexagonal lattice structures. Transmission electron microscopy (TEM) images illustrate rod-like as well as semi spherical ZnO nanoparticles with 15–20 nm diameter range, which were formed during the discharge process with 5 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZnO at the surface of the nanoparticles. Surface area of the sample prepared at 5 A arc current, measured by BET analysis, was 34 m2/g. Photodegradation of Rhodamine B (Rh. B) shows that the prepared samples at lower currents have a higher photocatalytic activity due to larger surface area and smaller particle size.  相似文献   

3.
Ga-doped SnO2 with different molar ratios of Ga/Sn (1, 2, 3, and 4 %) was prepared by a facile co-precipitation route. The photocatalysts prepared were characterized by N2 adsorption–desorption measurements, X-ray diffraction, UV/Vis diffuse reflectance spectroscopy, and scanning electron microscope. The separation efficiency of photo-generated charge was studied using benzoquinone as scavenger. Hydroxyl radicals produced during photocatalytic process were detected by a terephthalic acid photoluminescence probing technique. Doping Ga3+ into SnO2 can greatly enhance the separation efficiency of photo-induced charge and the formation rate of hydroxyl radicals. The superoxide radical is the main active species during the photocatalytic process. The catalytic activity of photocatalysts for decolorization of methyl orange in aqueous solution was investigated. Among the photocatalysts prepared, Ga-doped SnO2 with 3 %Ga possesses the best photocatalytic activity and the underlying mechanism is suggested.  相似文献   

4.
Zinc sulphide (ZnS) nanoparticles were prepared by homogeneous hydrolysis of zinc sulphate and thioacetamide (TAA) at 80 °C. After annealing at temperature above 400 °C in oxygen atmosphere, zinc oxide (ZnO) nanoparticles were obtained. The ZnS and ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HRTEM), selected area electron diffraction (SAED), by BET and BJH methods used for surface area and porosity determination. The photocatalytic activity of the as-prepared ZnO samples was determined by the decomposition of Orange II in the aqueous solution under UV irradiation of 365 nm of wavelength.  相似文献   

5.
Cu-doped ZnO nanoparticles were prepared by a sol-gel method for the first time. XRD, XPS, UV-vis and FS techniques were used to characterize the Cu-doped ZnO samples. The photocatalytic activity was tested for methyl orange degradation under UV irradiation. The results show that the crystal sizes of ZnO and 0.5% Cu/ZnO nanoparticles with wurtzite phase are 32.0 and 28.5 nm, indicating that Cu-doping hinder the growth of crystal grains. The doped Cu element existed as Cu2+. The optimal Cu doping concentration in ZnO is 0.5%. The optimal calcination condition is at 350 °C for 3 h. The MO degradation rate of 0.5% Cu/ZnO reaches 88.0% when initial concentration of MO is 20 mg/L, exceeding that of undoped ZnO. The enhanced charge carrier separation and increased surface hydroxyl groups due to Cu-doping contributed to the enhanced photocatalytic activity of 0.5% Cu/ZnO.  相似文献   

6.
AgBr photocatalysts were prepared with the 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) reactable ionic liquid at different temperatures by one-step hydrothermal method, in which the ionic liquid acted as a precursor and a template to control the size of AgBr crystal. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), the Brunauer–Emmett–Teller (BET) surface area and diffuse reflectance spectroscopy (DRS). Methyl orange (MO) dye was chosen as a model pollutant to investigate the photocatalytic activity and the stability of the samples under visible light irradiation. The results indicated that the AgBr photocatalysts showed high efficiency in the degradation of MO under visible light irradiation. The kinetic property of the reaction followed the first-order reaction model. During the photocatalytic degradation reaction, AgBr was transformed to the Ag0/AgBr composite. However, the photocatalytic efficiency was still high and the photocatalytic activity was stable. The possible photocatalytic mechanism of the photocatalysts was also eventually proposed.  相似文献   

7.
The electronic structures and magnetic properties of Pd-doped ZnO have been studied by the full-potential linear augmented plane wave (FLAPW) method using the generalized gradient approximation (GGA). We find that Pd-doped ZnO becomes 100% spin polarized when Pd substitutes for Zn in the 2×2×2 ZnO supercell. The supercell magnetic moment reaches 2.0μB. Long-range ferromagnetic (FM) coupling is obtained with all Pd dopant configurations, and a Curie temperature as high as 860 K is predicted for the ground-state configuration. The hybridized Pd(4d)-O(2p)-Zn(4d)-O(2p)-Pd(4d) chain formed through p-d-like coupling is responsible for the long-range room-temperature FM coupling. We discuss the effect of O vacancies or Zn vacancies on the magnetism as well.  相似文献   

8.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

9.
The microwave-synthesized zinc-oxide (ZnO) nanonorods of average length of ~ 1500 nm and diameter ~ 100 nm were irradiated with 6.5 meV electrons. From sample to sample, the electron fluence was varied over the range 5×1014 to 2.5×1015 e-cm?2. The pre- and post-electron-irradiated ZnO nanorods were characterized by X-ray diffraction, UV–VIS, EDAX, scanning electron microscopy, transmission electron microscopy, and BET methods. The results show that after electron irradiation, the ZnO nanorods could retain the hexagonal phase with the wurtzite structure; however, the average length of the ZnO nanorods reduced to ~ 800 nm. Moreover, the oxygen atoms from a fraction of ZnO molecules were dislodged, and the process contributed to the formation of Zn–ZnO mixed phase, with increased zinc to oxygen ratio. In the photo-degradation of Rhodamine-B, a significant enhancement in the photocatalytic activity of the electron-irradiated ZnO nanorods was observed. This could be attributed to the induced defects, reduced dimensions, and increased surface area of the ZnO nanorods, in addition to the formation of the Zn–ZnO phase. All these could collectively contribute to the effective separation of the photogenerated electrons from the holes on the ZnO nanorods, and therefore enhance the photocatalytic activity under UV exposure.  相似文献   

10.
王逸飞  李晓薇 《物理学报》2018,67(11):116301-116301
光催化材料在解决能源短缺和环境污染等问题方面具有广泛的应用前景,本文通过构建BiOI纳米薄膜并将其与石墨烯复合起来,得到具有较高的比表面积和良好的光催化活性的纳米复合物光催化材料.采用基于密度泛函理论的第一性原理方法分别计算了单层和双层BiOI纳米片及其与石墨烯复合结构的电子结构和光学性质,并考虑了BiOI中的Bi,O,I三种空位缺陷对电子结构和光学特性的影响.计算结果表明,由于BiOI和石墨烯之间的相互作用,在石墨烯和BiOI界面处自发发生电荷转移,形成电子-空穴对,且石墨烯衬底可有效提高BiOI对可见光的光吸收,提高其光催化活性.对空位缺陷的计算表明,Bi空位缺陷可促进石墨烯和BiOI之间的电荷转移,形成更多的层间电子-空穴对;相反,O和I空位缺陷则抑制层间电荷转移,减少电子-空穴对的生成.  相似文献   

11.
利用湿化学法在FTO玻璃基底上制备了高度规整的ZnO纳米棒阵列(ZnO NRAs),以此为衬底,采用磁控溅射法在ZnO NRAs表面沉积Cu_2O薄膜。分别用X射线衍射仪、X射线光电子能谱、扫描电镜、光致光谱、紫外可见分光光度计和电化学工作站对样品的物相、形貌、吸收光谱、光电性能进行了表征,用甲基橙(MO)模拟有机物废水研究复合材料的光催化性能。结果表明:ZnO纳米棒为六方纤锌矿结构,其直径约为80~100 nm,长约2~3μm,棒间距约100~120 nm。立方晶系的Cu_2O颗粒直径约为100~300 nm,形成致密膜层并紧密覆盖在ZnO NRAs表面上,构成ZnO/Cu_2O异质结纳米阵列(ZnO/Cu_2O HNRAs)结构。与纯ZnO NRAs和Cu_2O相比,ZnO/Cu_2O HNRAs在可见光范围内的吸收显著增强,吸收波长向可见光方向偏移。ZnO/Cu_2O HNRAs的载流子传递界面的电荷转移速度快,有效促进了光生电子和空穴的分离。在紫外-可见光照射65 min后,ZnO/Cu_2O HNRAs的降解效率为94%,分别是纯ZnO NRAs和Cu_2O的18倍和1.7倍。  相似文献   

12.
Influence of silver doping on the photocatalytic activity of titania films   总被引:13,自引:0,他引:13  
By means of X-ray diffraction, BET nitrogen adsorption, UV-Vis-NIR transmission spectroscopy, transmission electron microscope, scanning electron microscope, X-ray photoelectron spectroscopy and photodegradation of methylene blue, effects of Ag doping on the microstructure and photocatalytic activity of TiO2 films prepared by sol–gel method were studied. It is found that with a suitable amount (2–4 mol%), the Ag dopant increases the photocatalytic activity of TiO2 films. The mechanism can be attributed to that (1) anatase grain sizes decrease with Ag doping and the specific surface areas of doped TiO2 films increase, the charge transfer in TiO2 films is promoted; (2) by enhancing the electron–hole pairs separation and inhibiting their recombination, the Ag dopant enhances the charge pair separation efficiency for doped TiO2 films.  相似文献   

13.
纳米金红石TiO2光催化剂的水解合成及其性能   总被引:1,自引:0,他引:1  
采用水解法在323 K制备了比表面积较大的纳米金红石TiO2光催化剂,并通过X射线衍射(XRD)、BET比表面积测试法、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)和光电化学(PEC)测量对纳米光催化剂进行了表征。以甲基橙为光催化反应的模型化合物,在比表面积相近的条件下,对纳米金红石和锐钛矿TiO2光催化剂的光催化活性进行了评价。光催化实验结果表明:比表面积为~95 m2·g-1时,比表面积相近的金红石和锐钛矿的紫外光催化活性相当, 但金红石的可见光催化活性明显高于锐钛矿的可见光催化活性。光电化学实验表明: 在紫外光照射下催化剂的光电流密度从弱到强的顺序与其紫外光催化活性从低到高的次序一致。  相似文献   

14.
Photocatalytic active titanium dioxide (TiO2)/zinc oxide (ZnO) composite was prepared by homogeneous hydrolysis of a mixture of titanium oxo-sulphate and zinc sulphate in aqueous solutions with thioacetamide and subsequent annealing at the temperature of 600 °C. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission microscopy (HRTEM). Nitrogen adsorption-desorption was used for surface area (Brunauer-Emmett-Teller—BET) and porosity determination. The photoactivity of the prepared TiO2/ZnO samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry under irradiation of 254 and 365 nm wavelengths. Under the same conditions, the photocatalytic activity of a commercially available photocatalyst (Degussa P25), the pure anatase TiO2 nanoparticles and cubic ZnO were examined.  相似文献   

15.
Novel sponge-like ZnO microcuboids with a hierarchical structure were fabricated via an alcoholic thermal process. Then a series of noble metals (Ag, Pd, Pt, Rh) was loaded onto the microcuboids. The samples obtained were characterized by nitrogen physical adsorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The results show that the ZnO microcuboids have a high surface area and a sponge-like hierarchical structure. Activity tests for the degradation of acid orange II dye showed that the noble metals enhanced the activity of ZnO to different extents. For loading of 0.5 wt.%, the activity enhancement decreased in the order Pd>Ag>Pt>Rh. Co-loading of Pd and Ag had a detrimental effect on activity compared to single loading. The enhanced photocatalytic performance can be attributed to an increase in the rate of separation of photogenerated e/h+ pairs induced by the noble metals.  相似文献   

16.
In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer–Emmett–Teller (BET), room temperature photoluminescence (RT-PL) and UV–vis analysis were used for characterization of the synthesized ZnO powders. Using BET N2-adsorption technique, the specific surface area of the flower-like and spherical ZnO nanostructures were found to be 22.9 m2/gr and 98 m2/gr, respectively. Both morphologies show similar band gap values. Finally, our results depict that the efficiency of photocatalytic performance in the Zinc oxide nanostructures with spherical morphology is greater than that found in the flower-like Zinc oxide nanostructures as well as bulk ZnO.  相似文献   

17.
Novel Al-doped ZnO (AZO) photocatalysts with different Al concentrations (0.5–6.0 mol%) were prepared through a facile combustion method and followed by calcination at 500 °C for 3 h. The obtained nanopowders were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM) combined with EDX, transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy and photoluminescence spectroscopy. The XRD patterns of AZO nanopowders were assigned to wurtzite structure of ZnO with the smallest crystallite size about 11 nm consistent with the results from TEM. The doping of Al in ZnO crystal structure successfully suppressed the growth of ZnO nanoparticles confirmed by XRD patterns. The absorption spectra analysis showed that the optical band gap energy (Eg) for the AZO nanopowders were in the range of 3.12–3.21 eV and decreased with increasing of Al dopant. The photocatalytic activities of the samples were evaluated by photocatalytic degradation of methyl orange under visible light (λ ≥ 420 nm) and sunlight irradiation. The results showed that the AZO photocatalyst doped with 4.0 mol% Al exhibited five times enhanced photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity could be attributed to extended visible light absorption, inhibition of the electron–hole pair's recombination and enhanced adsorptivity of MO dye molecule on the surface of AZO nanopowders.  相似文献   

18.
Nitrogen doped TiO2 nanoparticles decorated on graphene sheets are successfully synthesized by a low-temperature hydrothermal method. The resulting GR-N/TiO2 composites are characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-Ray photoelectron spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The optical properties are studied using UV–visible diffuse reflectance spectroscopy (DRS), which confirms that the spectral responses of the composite catalysts are extended to the visible-light region and show a significant reduction in band gap energy from 3.18 to 2.64 eV. Photoluminescence emission spectra verify that GR-N/TiO2 composites possess better charge separation capability than pure TiO2. The photocatalytic activity is tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrate that GR-N/TiO2 composites can effectively photodegrade MO, showing an impressive photocatalytic enhancement over pure TiO2. The dramatically enhanced activity of composite photocatalysts can be attributed to great adsorption of dyes, enhanced visible light absorption and efficient charge separation and transfer processes. This work may provide new insights into the design of novel composite photocatalysts system with efficient visible light activity.  相似文献   

19.
Bi2O3 surface-modified TiO2 nanoparticle has been synthesized by sol-hydrothermal processes, followed by post-treatment with an appropriate amount of bismuth nitrate solution, and also characterized by XRD, Raman, BET, TEM, FT-IR, XPS, UV-vis DRS and SPS techniques. The effects of the surface-modification with Bi2O3 on the thermal stability, photoinduced charge separation and photocatalytic activity for degrading rhodamine B (or phenol) under ultraviolet (or visible) irradiation are investigated in detail, along with their relationships and the activity enhancement mechanisms are also suggested. The results show that the modification with Bi2O3 can improve the thermal stability of the as-prepared anatase crystallites, consequently enhancing the anatase crystallinity so as to promote the photoinduced charge separation. And the modification with Bi2O3 also extends the optical response range. It can be concluded that the activity enhancement of surface-modified TiO2 is mainly attributed to the increase in the photoinduced charge separation rate and to the extent of the optical response range, compared with un-modified ones. Moreover, the inhibition phase transformation mechanism related to Bi2O3 is suggested.  相似文献   

20.
利用辐射还原法,在100, 200, 500 kGy辐射剂量下制备了金属Pd掺杂的碳气凝胶粉末。X射线衍射(XRD),扫描电子显微镜(SEM)和能谱测试证实了辐射法成功地制备出Pd掺杂的碳气凝胶粉末复合物。SEM照片表明,还原生成的金属Pd相对均匀地分布在所有碳气凝胶颗粒表面。N2吸附数据分析表明:掺入金属Pd后,碳气凝胶粉末比表面积、平均孔径和总孔体积都显著减小。由于被还原金属大多沉积在碳气凝胶粉末表面,不同辐射剂量下制得的掺杂碳气凝胶粉末的比表面积等多孔特征数据相差不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号