首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ag-doped mesoporous titania was synthesized via a combined sol-gel process with surfactant-assisted templating method using cetyltrimethyl ammonium bromide (CTAB) as the structure-directing agent. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was determined by degradation of model contaminant water of phenol in aqueous solution. Results showed that different amounts of Ag-doping had different effects on the crystal phase structure and photocatalytic activity of the samples. The sample with 0.5% Ag doping shows the highest photocatalytic activity, which is 2.3 times that of the undoped mesoporous titania.  相似文献   

2.
Ruthenium oxide (RuO2) thin films have been prepared using single step chemical method containing Ru(III) Cl3 solution in an aqueous medium at low temperature. The structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical absorption technique. The XRD study revealed the formation of amorphous RuO2 thin film. The surface examination by SEM showed formation of nano-porous material on the substrate. The TEM study revealed the formation of nanostructured material. The optical absorption studies showed the presence of direct band transition with band gap equal to 2.2 eV. The RuO2 has proved its applicability in supercapacitor showing 50 F/g specific capacitance in 0.5 M H2SO4 at 20 mV/s scan rate.  相似文献   

3.
Novel oxygen sensing materials consisting of [Ru(Bphen)2bpy]2+ (Bphen=4,7-diphenyl-1,10-phenanthroline, bpy=2,2′-bipyridyl) portion covalently grafted to the backbones of the ordered functionalized mesoporous MCM-41 are synthesized by co-condensation of tetraethoxysilane (TEOS) and the functionalized Ru(II) complex [Ru(Bphen)2Bpy-Si]2+ using surfactant cetyltrimethylammoniumbromide (CTAB) as template. The Bpy-Si was used as not only one of the precursors of the sol-gel process but also the second ligand of Ru(Bphen)2Cl2·2H2O complex to prepare the functionalized mesoporous materials for oxygen sensors. Dye leaching shortcoming is overcome due to the Si-C bonds. The derivative mesoporous oxygen sensing materials are characterized by Fourier transform infrared (FT-IR), small angle X-ray diffraction (SAXRD), luminescence intensity quenching Stern-Volmer plots, and excited-state decay analysis. The mesoporous materials show higher sensitivity to the O2 concentration in N2 (I0/I100=23.2) and shorter response time (1.2 s) in comparison with those based on sol-gel method. When the concentration of oxygen is 10%, the luminescence intensity of the oxygen sensor can be quenched by 89.9%, suggesting that it is highly sensing at low concentration of oxygen.  相似文献   

4.
In the present study, ruthenium oxide (RuO2) thin films were deposited on the stainless steel (s.s.) substrates by anodic deposition. The nucleation and growth mechanism of electrodeposited RuO2 film has been studied by cyclic voltammetry (CV) and chronoamperometry (CA). The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-rays (EDAX) for structural, morphological, and compositional studies. The electrochemical supercapacitor study of ruthenium oxide thin films have been carried out for different film thicknesses in 0.5 M H2SO4 electrolyte. The highest specific capacitance was found to be 1190 F/g for 0.376 mg/cm2 film thickness.  相似文献   

5.
Nanostructured powders of ruthenium dioxide RuO2 were synthesized via a sol-gel route involving acidic solutions with pH varying between 0.4 and 4.5. The RuO2 nanopowders were characterized by X-ray diffraction. Crystallite sizes measured from X-ray diffraction profiles and TEM analysis varied in the range 8-16 nm, with a minimum of crystallite dimension for pH 1.5. Catalytic conversion of methane by these RuO2 nanostructured catalysts was studied as a function of pH, catalytic interaction time, air methane composition, and catalysis temperature, by the way of Fourier transform infrared (FTIR) spectroscopy coupled to homemade catalytic cell. The catalytic efficiency defined as FTIR absorption band intensities I(CO2) was maximum for sample prepared at pH 1.5, and mainly correlated to crystallite dimensions. A modeling approach of catalytic conversion is proposed for such a specific experimental configuration.  相似文献   

6.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

7.
The deconvolution process of X-ray photoemission spectra for O 1s and Ru 3d, X-ray diffraction and Rutherford backscattering spectrometry reveal that the RuO x films (x = 2.0 – 2.2) deposited at a O2 partial pressure less than 30% show (110)-oriented grains, whereas the RuO x films (x = 2.3 – 2.4) deposited at a 40–50% O2 partial pressure show amorphous and (101)-oriented grains due to the excess O interstitials and RuO3 or RuO4. These differences in the crystal phases of RuO x influence the crystal structure of BaTiO3 deposited on these RuO x bottom electrodes, resulting in a higher dielectric constant and a lower dissipation factor for tetragonal BaTiO3/RuO x (x = 2.1) than amorphous BaTiO3/RuO x (x = 2.4).  相似文献   

8.
An aqueous solution of cupric nitrate trihydrate (Cu(NO3)2·3H2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.  相似文献   

9.
Superhydrophobic rough structure was prepared on copper wafer via HNO3 etching technique with the assistance of Cetyltrimethyl Ammonium Bromide (CTAB) and ultrasonication. After modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDTES), the copper wafer showed stable superhydrophobicity. The morphologies, chemical compositions and hydrophobicity of the substrates were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Dense and spherical micropits appeared on copper wafer after it was etched by 5 M nitric acid with 1.2 mM CTAB under ultrasonication for 20 min. The SEM results indicated that the joint action of CTAB and ultrasonication caused the formation of dense and spherical micropits.  相似文献   

10.
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e or h+ traps and reduce e/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance.  相似文献   

11.
Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi2Ta2O9 (SBT) and Ba2NaNb5O15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO2 film morphology depended on substrate nature. A study of CH4 conversion into CO2 and H2O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO2 films deposited on BNN oxide layer.  相似文献   

12.
《Current Applied Physics》2014,14(3):439-446
Beyond the most investigated mesoporous silica and carbon based materials, metal oxides have attracted considerable interest due to their more diverse electronic functionality, which includes gas sensing activities, semiconductor characteristics and magnetic properties. In this paper, we describe the fabrication, characterization and application of mesoporous FeNbO4 nanopowder for ethanol gas sensing application. FeNbO4 nanopowder was synthesized via the niobium–citrate complex method, without using any surfactant and size selection medium. Thermal stability and structure of the nanopowder was analyzed by thermogravimetric analysis (TG/DTA) and X-ray diffraction analysis (XRD). Structural analysis confirmed the formation of FeNbO4 with monoclinic structure. The particle size, electrical and optical properties were also systemically investigated by means of transmission electron microscopy (TEM), impedance and diffused reflectance spectra. Nitrogen adsorption isotherms of the FeNbO4 were type IV with hysteresis loops of type H3 indicating well-defined pore structure with mesoporous nature. The sensing characteristics of FeNbO4 nanopowder such as sensitivity, operating temperature and response time, were studied in the presence of ethanol (C2H5OH). Experimental result confirmed that a higher response to ethanol at relatively lower operating temperature of 200 °C.  相似文献   

13.
Using cetyltrimethyl ammonium bromide (CTAB) as the template and sodium silicate as the silicon source, the MCM-41 mesoporous molecular sieves with Eu incorporated in the framework were synthesized under microwave irradiation condition and the influence of the Si/Eu molar ratio on the crystalline structure, textural properties and the long-range ordering of the resulting sample was investigated by various physicochemical techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis), thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption. The results of N2 adsorption and XRD reveal that the synthesized sample has the ordered hexagonal mesoporous structure. UV-vis spectra provide the strong evidences that most of europium ions were incorporated into the framework of the MCM-41 sample. The crystalline structure, textural properties and mesoporous ordering of the resultant mesoporous materials are related to the amount of europium incorporation. Small amount europium incorporated into the silica-based MCM-41 does not strongly modify the structure of mesoporous molecular sieve. An increase of the Eu content in sample led to reduction of the specific surface area and the deterioration of the long-range ordering.  相似文献   

14.
In this paper, a novel luminescent organic-inorganic hybrid material containing covalently bonded ternary europium complex in mesoporous silica MCM-41 has been successfully prepared by co-condensation of tetrethoxysilane (TEOS) and the modified ligand 2-phenyl-1H-imidazo[4,5-f][1,10]phen-3-(triethoxysilyl)propylcarbamate (PIP-Si) in the presence of cetyltrimethylammonium bromide (CTAB) surfactant as template. PIP-Si containing 1,10-phenanthroline covalently grafted to 3-(triethoxysilyl)propyl isocyanate is used not only as a precursor but also as the second ligand for Eu(TTA)3·2H2O (TTA: 2-thenoyltrifluoroacetate) complex to prepare a novel functionalized mesoporous material. The resulted mesoporous composite materials, which demonstrate strong characteristic emission lines of Eu3+5D0-7FJ (J=0, 1, 2, 3, 4), were characterized by Fourier transform infrared (FT-IR), small-angle X-ray diffraction, excited-state decay analysis. Emission intensity of the Eu(III) complex covalently linked to MCM-41 (Eu-MCM-41) increases with the increasing irradiation time, demonstrating better photostability compared with both pure Eu(III) complex and physically incorporated sample.  相似文献   

15.
R. Mariappan  T. Mahalingam  V. Ponnuswamy 《Optik》2011,122(24):2216-2219
Tin sulfide (SnS) thin films have been deposited by electrodeposition using potentiostaic method on indium doped tin oxide (ITO) coated glass substrates from aqueous solution containing SnCl2·2H2O and Na2S2O3 at various potentials. Good quality thin films were obtained at a cathodic potential −1000 mV versus saturated calomel electrode (SCE). The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR). X-ray diffraction analysis shows that the crystal structure of SnS thin films is orthorhombic with preferential orientation along 〈0 2 1〉 plane. Microstructural parameters such as crystallite size, micro strain, and dislocation density are calculated and found to depend upon cathodic potentials. SEM studies reveal that the SnS films exhibited uniformly distributed grains over the entire surface of the substrate. The optical transmittance studies showed that the direct band gap of SnS is 1.1 eV. FTIR was used to further characterize the SnS films obtained at various potentials.  相似文献   

16.
Superhydrophobic functionalized cupric hydroxide (Cu(OH)2) nanotube arrays were prepared on copper foils via a facile alkali assistant surface oxidation technique. Thus nanotube arrays of Cu(OH)2 were directly fabricated on the surface of copper foil by immersing in an aqueous solution of NaOH and (NH4)2S2O8. The wettability of the surface was changed from surperhydrophilicity to superhydrophobicity by chemical modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS). The morphologies, microstructures, crystal structure, chemical compositions and states, and hydrophobicity of the films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. It was found that the rough structure of the surface helped to magnify the wettability. The static contact angle (CA) for water is larger than 160° and the contact angle hysteresis (CAH) is lower than 5° on the modified surface. The high roughness of the nanotube arrays along with the generated C-F chains by chemical modification contributed to the improved superhydrophobicity. The present research is expected to be significant in providing a new strategy for the preparation of novel multifunctional materials with potential industrial applications on copper substrates.  相似文献   

17.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

18.
A series of continuous, crack-free, highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of cationic CH3(CH2)15N+(CH3)3Br (CTAB), nonionic C16H33(OCH2CH2)10OH (Brij-56) or triblock copolymer H(OCH2CH2)20(OCH(CH3)CH2)70(OCH2CH2)20)OH (P123) surfactant species under acidic conditions by sol-gel dip-coating. The molar ration of APTES/(TEOS + APTES) in the starting sol attains a value of 0.4. The effect of the sol aging on the mesostructure of thin films is systematically studied, and the optimal sol aging time is obtained for different surfactant systems. The amino-functionalized mesoporous silica thin films exhibit long-range ordering of 2D hexagonal (p6mm) and 3D cubic (Fm3m) pore arrays of size range from 2.2 to 8.3 nm following surfactants extraction as demonstrated by XRD, TEM and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for thin films prepared using different surfactants is calculated to be 3.2 and above amino-groups per nm2, which is very useful and promising for incorporating inorganic ions and biomolecules into these mesoporous silica materials.  相似文献   

19.
Non-stiochiometric ternary chalcogenides Zn1−xFexS, were prepared in the bulk form by co-precipitation of ZnS and FeS by Na2S from aqueous solution containing FeSO4 and ZnSO4 and sintering of pellets of the co-precipitate repeatedly at 1073K in vacuum sealed quartz ampoules. Concomitant with the bulk form; thin fims of (Zn,Fe)S were synthesized by pyrolytic spray deposition method on quartz substrates from aqueous precursor solution containing ZnCl2, FeCl2 and thiourea in varying concentration under optimized conditions of substrate temperature (653K) carrier gas flowrate (11 l min−1) and solution flow rate (8-6 ml min−1).The structure, chemical composition, optical and thermoelectrical properties of the (bulk) pellets and thin films are studied as a function of initial solution concentration.X-ray diffraction of the pellets and thin films indicated the presence of solid solutions Zn1−xFexS (sphalerite), while surface morphology as determined by SEM revealed a granular structure. Electrical resistivity of pellets and thin films, measured using two probe method (for pellets) and four probe van der Pauw method (for thin films) indicated that they are semiconducting while resistivity studies could not be carried out for a few thin films due to their high resistance (>20 MΩ).The chemical composition of the resulting solids as analyzed by X-ray fluorescence and that of thin films as analyzed by energy dispersive X-ray, reflected the composition of the solutions from which precipitation (for pellets) and deposition (for thin films) was carried out, with Fe contents up to x=0.4.SEM micrograph of pellets and thin films reveal that later have smaller grain size.Thermoelectric studies revealed that both solids and thin films possess the ability of ‘n’ as well as ‘p’ type conductivity.The diffuse optical reflectance measurements of pellets and transmittance measurements for thin films; as a function of wavelength reveal the dependence of direct optical band-gap on Fe content.  相似文献   

20.
在温和的条件下,通过H2O2水热处理预合成的MCM-48,得到了有序的双峰介孔硅MCM-48球. 结果表明H2O2对于同时去除有机模板剂及形成双峰介孔硅MCM-48球具有重要的作用.采用XRD、TEM、FT-IR和N2吸附-解吸等方法对双峰介孔MCM-48材料进行了表征,对双峰介孔MCM-48的形成机理也进行了探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号