首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用四端接线法测量以普通铸造(DC)和低频电磁铸造(LFEC)两种不同方法制备的7050铝合金的电阻率-温度曲线. 发现升温曲线在250℃有一斜率转变点,且LFEC样品电阻率随温度变化得要快;由室温至900℃的过程中,LFEC试样的液固相线温度均高于DC试样;而DC试样在900℃保温甚至降温至600℃电阻率都显著增大. 结合金相显微组织的观察,对上述现象进行理论分析. 关键词: 低频电磁铸造 电阻率 铝合金 洛伦兹力  相似文献   

2.
The electron-electron interactions in lithium metal have been examined keeping in view the recent developments. The contribution of the electron-electron Umklapp scattering processes in the electrical resistivity of lithium at low temperatures has been evaluated using a simplified spherical Fermi surface model with isotropic transition probability. Our values of the electrical resistivity so obtained compare fairly well with the experimental results for lithium.   相似文献   

3.
A high pressure-high temperature cell which permitsin-situ pressure and temperature calibration is described. The cell is in an opposed anvil configuaration, and houses two samples with four probes each along with a miniature furnace and a thermocouple. The pressure and temperature capability of the cell are 100 kbar and 1000°C respectively. This cell was developed to study the electrical resistivity of metals and alloys at high pressure and high temperature. Bismuth was used to calibrate the cell. We report in this paper the design details and the performance of this cell. Ni has been chosen as a test problem and the observed behaviour is indicated to show the quality of data.  相似文献   

4.
In this work the impact of single discharge pulses in air on single-crystalline, p-type silicon having a low bulk resistivity of 0.009-0.012 Ω cm is investigated. Compared to platinum specimens, the craters in silicon have lateral dimensions which are about one order of magnitude larger despite comparable values for the melting point and the melting energy. This finding is attributed to the substantially higher bulk resistivity of silicon leading a higher energy input into the substrate when spark loaded. The energy generated by joule heating is, however, distributed across a larger area due to a current spreading effect. To study the impact of different surface properties on the sparking behaviour, the crater formation on the silicon substrate is investigated applying coatings with different material properties, such as sputter-deposited aluminium layers and thermally-grown silicon dioxide. In general, the crater characteristics formed on unmodified silicon is not influenced when a thin aluminium layer of 24 nm is deposited. At higher film thickness above 170 nm, the sparking energy is almost completely absorbed in the top layer with low influence on the underlying silicon substrate. In the case of a dielectric top layer with a thickness of 155 nm, the formation of many small distinct craters is supported in contrast to a 500 nm-thick SiO2 film layer where the generation of a single crater with a large area is energetically favoured. A surface roughness of several nm on the silicon probes has no measurable effect on crater formation when compared to an original surface characteristic with values in the sub-nm range.  相似文献   

5.
李鸿明  董闯  王清  李晓娜  赵亚军  周大雨 《物理学报》2019,68(1):16101-016101
铜合金以低电阻率为特征,由于电阻率与强度存在着共同的微观结构机理,两者往往协同变化,而导致难以对合金进行性能的全面评估和选材.本文以Cu-Ni-Mo合金作为研究对象,以团簇结构[Mo_1-Ni_(12)]构建固溶体的近程序结构模型,解析了电阻率和强度依赖于成分的定量变化规律,并定义了拉伸强度/电阻率的值为代表合金本质特性的"强阻比",得到了完全固溶态Cu-Ni-Mo合金的强阻比为7×10~8MPa/?·m,完全析出态的强阻比为(310—490)×10~8MPa/?·m.进而应用强阻比对常用铜合金进行了性能分区,给出铜合金材料选材的依据,得出了基于Cu-(Cr, Zr, Mg, Ag, Cd)等二元基础体系的铜合金适用于高强高导应用,而基于Cu-(Be, Ni, Sn, Fe, Zn, Ti, Al)等为基础二元体系的铜合金不能实现高强高导.该强阻比为310的特征性能分界线的发现为合金性能的全面评估提供了量化依据,可指导高强高导铜合金的选材和研发.  相似文献   

6.
In this work, we report the effect of substrate, film thickness and sputter pressure on the phase transformation and electrical resistivity in tantalum (Ta) films. The films were grown on Si(1 0 0) substrates with native oxides in place and glass substrates by varying the film thickness (t) and pressure of the working gas (pAr). X-ray diffraction (XRD) analysis showed that the formation of α and β phases in Ta films strongly depend on the choice of substrate, film thickness t and sputter pressure pAr. A stable α-phase was observed on Si(1 0 0) substrates for t ≤ 200 nm. Both α and β phases were found to grow on glass substrates at all thicknesses except t = 100 nm. All the films grown on Si(1 0 0) substrates for pAr ≤ 6.5 mTorr had α-phase with strong (1 1 0) texture normal to the film plane. The glass substrates promoted the formation of β-phase in all pAr except pAr = 5.5 mTorr. The resistivity ρ was observed to decrease with t, whereas ρ was increased with pAr on Si(1 0 0) substrates. In all films, the measured resistivity ρ was greater than the bulk resistivity. The resistivity ρ was influenced by the effects of surface roughness and grain size.  相似文献   

7.
The nanostructured powders of the Ni95.4Mo4.6 and Ni99Mo1 alloys (average crystallite dimensions of 14 and 21 nm) were obtained by the electrochemical deposition from ammonium solutions of nickel and molybdenum salts. The method of differential scanning calorimetry (DSC) and measurement of temperature dependence of the powder's electrical resistivity, magnetic permeability and the thermoelectromotive force were employed to examine structural changes of the powders. The nanocrystalline alloys Ni95.4Mo4.6 and Ni99Mo1 were stable up to about 460 K. The thermal stabilization of the alloys takes place within the temperature interval of 460–570 K. As a result of this process, a decrease in the electrical resistivity and increases in magnetic permeability as well as electron state density in the proximity of the Fermi level are observed. The crystallization temperature depends upon the current density of powder formation. The nanocrystalline alloy Ni95.4Mo4.6 obtained at j=70 mA cm−2 becomes crystallized in the temperature range between 650 and 840 K, while the Ni99Mo1 alloy obtained at j=180 mA cm−2 crystallizes in the 580–950 K temperature interval. The electrical resistivity and magnetic permeability of the nanocrystalline alloy decreased while the alloy's electron state density near the Fermi level increased after the process of crystallization took place. The electrical resistivity decrease recorded during the structural changes was due to an increase in the electron state density in the proximity of the Fermi level, as well as to an increase in the mean free path of the conducting electrons.  相似文献   

8.
Polycrystalline Ni0.65−xCdxZn0.35Fe2O4 ferrites with x varying from 0.00 to 0.20 in steps of 0.04 have been prepared by conventional ceramic route. Calcination and sintering of samples were performed at 950 and 1250 °C for 4 and 2 h, respectively. The prepared samples were characterized by powder X-ray diffraction. The observed modifications in structure and increase in lattice constant are attributed to the difference in ionic radius of substituted Cd2+ ion and displaced Ni2+ ion. The room temperature specific saturation magnetization and Curie temperature are observed to decrease continuously with decrease in cadmium content and are attributed to the decline of A-B exchange interaction. The monotonic increase in initial permeability and decrease in magnetic loss are observed with cadmium concentration. An increase in dc electrical resistivity is observed up to x=0.12 of cadmium followed by a continuous decrease. The variation of electrical resistivity with temperature was measured in the temperature range of RT-140 °C and the corresponding activation energies for conduction obtained from the log ρ vs 1/T graphs.  相似文献   

9.
应用在位电阻率测量方法研究高压下锐钛矿TiO2的电学性质。通过研究电阻率随压力变化的异常变化点,观察到了TiO2从锐钛矿-柯铁矿-斜锆石的相变。卸压后,电阻率数值和初始值相差2个数量级,说明该相变为不可逆相变。结合第一性原理计算结果表明,柯铁矿结构更小的带隙是导致TiO2电阻率减小的根本原因。  相似文献   

10.
应用在位电阻率测量方法研究高压下锐钛矿TiO2的电学性质. 通过研究电阻率随压力变化的异常变化点, 观察到了TiO2从锐钛矿-柯铁矿-斜锆石的相变. 卸压后,电阻率和初始值相差2个数量级, 说明该相变为不可逆相变. 结合第一性原理计算结果表明, 柯铁矿结构更小的带隙是导致TiO2电阻率减小的根本原因.  相似文献   

11.
Electrical resistivityρ(T) of spin glasses within the framework of Mookerjee and Chowdhury’s percolation model where there is a distribution of relaxation times (drt) is calculated.ρ(T) thus calculated is in better qualitative agreement with experimental results than that in the single relaxation time model.  相似文献   

12.
The A.C. conductivity and complex dielectric constant (relative permittivity) as function of temperature 300<T<500?K measured at different frequencies (f?=?5, 10, 15, 20 and 100?kHz) for polycrystalline samples of p-diiodobenzene (hereafter p-DIB) are presented. The main feature of the behavior of electrical parameters clarified that, the compound undergoes a structural phase transition at ≈?327?K. The interpretation of the behavior of the obtained parameters is outlined and correlated to the crystal structure of the two phases.  相似文献   

13.
在Ag38.5Cu33.4Ge28.1三元共晶合金的深过冷实验中,获得的最大过冷度为175 K(0.22TE). XRD分析表明,不同过冷条件下其共晶组织均由(Ag),(Ge)和η(Cu3Ge)三相组成. 在小过冷条件下,三个共晶相协同生长,凝固组织粗大.随着过冷度的增大,共晶组织明显细化,(Ge)相与其他两相分离,以初生相方式生长,而(Ag)相与η相始终呈二相层片共晶方式共生生长. 当过冷度超过80 K时,初生相(Ge)由小过冷时的块状转变为具有小面相特征的枝晶方式生长. 部分小面相(Ge)枝晶出现规则的花状,花瓣数介于5—8之间,并且过冷度越大(Ge)相越容易分瓣. 花状(Ge)枝晶的晶体表面为{111}晶面簇,择优生长方向为〈100〉晶向族. 关键词: 三元共晶 晶体形核 深过冷 快速凝固  相似文献   

14.
Bi0.9Ho0.1Fe0.95O3 and Bi0.9Ho0.1Fe0.9Ti0.05O3 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bi0.9Ho0.1Fe0.9Ti0.05O3 ceramics were much smaller than those of Bi0.9Ho0.1Fe0.95O3. An electrical resistivity of more than 1 × 1014?·cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of ~ 0.485 emu/g were obtained for Bi0.9Ho0.1Fe0.9Ti0.05O3; both were much higher than those of Bi0.9Ho0.1Fe0.95O3. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and(Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.  相似文献   

15.
Electrical resistivity studies of the charge transfer complex benzidine—TCNQ and its inclusion compound, have been carried out up to pressures 8 GPa. Two types of behaviour were observed in these complexes under high pressure and this difference is interpreted and discussed.  相似文献   

16.
Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9HOo.lFeo.9Tio.0503 ceramics were much smaller than those of Bio.9HOo.lFeo.9503. An electrical resistivity of more than 1 × 1014.cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of 0.485 emu/g were obtained for Bi0.9HO0.1Fe0.9Ti0.0503; both were much higher than those of Bio.9Hoo.1Feo.9503. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.  相似文献   

17.
Through addition of Tantalum, fine TaC particles were in situ synthesized in a NiCrBSi alloy laser clad composite coating. Microstructure, microhardness and abrasive wear resistance of the composite coating were investigated. The result showed that TaC particles were dispersed in Ni based alloy composite coating, refining the microstructure of the coating after laser cladding. Amount of coarse primary carbides such as M7C3 and eutectic of γ-Ni + M23C6 substantially decreased because the formation of TaC particles suppressed the formation of M7C3 and M23C6. On the one hand, fine TaC particles acted as hard phase, which improved the microhardness of the composite coating; on the other hand, a decrease in amount of the coarse M7C3 and eutectic of γ-Ni + M23C6 reduced the crack susceptibility of the Ni based composite coating. Also, Ta element improved the abrasive wear resistance of the Ni based coating.  相似文献   

18.
This paper reports the phase transformation behaviour of tetracyanoethylene (TCNE) under pressure as revealed by AC electrical resistivity, its time evolution and X-ray diffraction studies. An irreversible transformation from monoclinic to cubic phase occurs at 2.1±0.1 GPa and is indicated by a sharp resistivity drop at this pressure. The time evolution of resistivity studies indicate that this transformation occurs via an intermediate phase having resistivity higher than either of the two crystalline phases. Finally, the kinetics of phase transformations obtained by time evolution of resistivity is compared with the X-ray studies on the pressure quenched TCNE.  相似文献   

19.
萘磺酸掺杂对纳米管结构聚苯胺低温电阻率的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
通过研究用自组装法制备的萘磺酸掺杂的纳米管结构聚苯胺(苯胺与萘磺酸的摩尔比分别为1∶025,1∶05,1∶1,1∶2,1∶3)的电阻率温度依赖关系(测量温区为80—300K),仔细分析聚苯胺的结构形貌特征,提出了变程跳跃隧道穿透混合模型:认为在萘磺酸掺杂的纳米管结构聚苯胺样品中,跳跃和隧穿两种机制同时起作用,载流子沿纳米管传导是变程跳跃过程起主要作用,而载流子在纳米管之间的传导是隧穿过程起主要作用.实验结果表明,不同浓度的萘磺酸掺杂对样品的低温电阻率的影响很大,随着掺杂浓度增加,载流子传导所需克服的能垒C0迅速减小,当掺杂接近饱和时,C0不再减小.实验中还研究了不同形貌对电阻率的影响,结果表明样品中纳米管所占比例的增大有利于载流子传导 关键词: 聚苯胺 纳米管 低温电阻率  相似文献   

20.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号