首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The template strategy combined with electrodeposition technique has been used to produce copper nanowires in the cylindrical pores of track-etched polycarbonate membranes. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy have been used to characterize as-prepared copper nanowires. XRD study shows the face centered cubic crystal structure of copper nanowires. Williamson–Hall (WH) analysis has been used to determine the crystallite size and microstrain induced due to lattice deformation. FESEM results reveal that copper nanowires are continuous, well aligned with uniform diameter and having high aspect ratio. The optical absorption spectra exhibit a strong peak at 568 nm attributed to the surface plasmon resonance. The current–voltage (IV) characteristics show an ohmic behavior of the fabricated copper nanowires. The increase in resistivity of nanowires than that of bulk counterpart has been attributed to the surface and size effects in nanowires and explained in the light of Fuchs–Sondeimer and Mayadas–Shatzkes models.  相似文献   

3.
Magnetic nanowires   总被引:1,自引:0,他引:1  
We review recent developments in the research on magnetic nanowires electrodeposited into pores of membranes. Typical nanowires fabricated by this method have a diameter in the range 30–500 nm for a length of the order of 10 μm, and can be composed of a stack of layers of different metals with thicknesses in the nanometer range (multilayered nanowires). We describe the preparation methods and present typical examples of structural characterization. We review the magnetic properties with examples of results on both arrays of nanowires and isolated nanowires. We then describe the magnetoresistance properties of multilayered nanowires, and their interest for their understanding of the CPP–GMR and the determination of spin diffusion lengths. The last section is an overview on the perspectives of future research.  相似文献   

4.
Orientation control and the magnetic properties of single crystalline Co nanowires fabricated by electrodeposition have been systematically investigated. It is found that the orientation of Co nanowires can be effectively controlled by varying either the current density or the pore diameter of AAO templates. Lower current density or small diameter is favorable for forming the (1 0 0) texture, while higher current values or larger diameter leads to the emergence and enhancement of (1 1 0) texture of Co nanowires. The mechanism for the manipulated growth characterization is discussed in detail. The orientation of Co nanowires has a significant influence on the magnetic properties, resulting from the competition between the magneto-crystalline and shape anisotropy of Co nanowires. This work offers a simple method to manipulate the orientation and magnetic properties of nanowires for future applications.  相似文献   

5.
X.R. Wang  J. Lu  C. He 《Annals of Physics》2009,324(8):1815-1820
The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.  相似文献   

6.
Structural and magnetic properties of two-dimensional spatially ordered system of ferromagnetic cobalt nanowires embedded into Al2O3 matrix have been studied using polarized small-angle neutron scattering. A comprehensive analysis of contributions to the scattering intensity was carried out, including nonmagnetic (nuclear) contribution, magnetic contribution depending on the magnetic field, and nuclear-magnetic interference indicating the correlation between the magnetic and nuclear structures. Experiments have revealed an anomalously low value of the magnetic contribution as compared to the nuclear one. This behavior is interpreted in terms of low coherence of the magnetic structure caused by the anisotropy of Co crystallites as compared with the large coherency of nuclear structure of nanowires.  相似文献   

7.
Ultrafine nanowires of Fe-Co with a diameter around 15 nm have been fabricated by electrodeposition method using anodic porous alumina as a template. The alloy nanowires were in the form of arrays and consisting of polycrystalline structures. They showed obvious shape anisotropy parallel to the axis of nanowires and the perpendicular coercivity (Hc) was found to be 2576.8 Oe which is higher than any coercivity value reported in the literature. The effects of critical factors such as heat treatment and temperature of annealing on the structure and magnetic properties of the ultrafine nanowire arrays were studied and discussed.  相似文献   

8.
In this work, the magnetic and microstructural properties of CoPt nanowires are presented as a function of the electrolyte pH and current density during electrodeposition into anodized alumina templates. CoPt nanowires of high aspect ratio have been prepared using electrolyte pH values in the range from 2 to 6. The as-made samples exhibit a face centered cubic (fcc) structure with soft magnetic properties which transform into the face centered tetragonal (fct) L10 phase after thermal treatment. Different pH values of the electrolyte during electrodeposition lead to significantly different microstructures and, therefore, different magnetic properties. The CoPt nanowires prepared at high pH value are composed of fcc nanorods of about 25 nm in length. Thermal annealing of these samples leads to a preferred (0 0 1) orientation (along the direction perpendicular to the direction of nanowires) which increases with annealing time. On the other hand, the CoPt nanowires prepared at lower pH value are composed of uniform fcc nanograins with the size ∼2−3 nm. Magnetization curves for the later sample are virtually identical in both directions indicating an isotropic behavior.  相似文献   

9.
Nickel nanowires, 20 μm long and 200 nm in diameter, were fabricated by electrodeposition into alumina templates, and characterised by superconducting quantum interference device (SQUID) magnetometer, X-ray diffraction and scanning electron microscopy. Biocompatibility studies of nickel nanowires with differentiated THP-1 cell line-derived macrophages were carried out. From a multiparametric assay, using high content analysis (HCA), the critical time points and concentrations of nickel nanowires on THP-1 cellular response were identified. The nanowires displayed little or no toxic effects on THP-1 cells over short incubation times (10 h), and at low concentrations (<100 nanowires per cell). Our findings indicate the potential suitability of these wires for biological and clinical applications.  相似文献   

10.
采用推广模拟退火算法(Generalized Simulated Annealing,GSA)和Sutton-Chen势,研究了初始构型为面心立方(fcc)结构的Ni纳米线,在沿径向压缩时的结构和性质.结果表明:径向压缩程度对Ni纳米线的结构有很大的影响.当Ni纳米线直径大于0.398nm时(初始直径为0.498nm),其结构由fcc结构变为类似fcc结构,但结合能变化很小,表明其结构之间几乎可以实现零能量转换,且稳定性基本不变;当Ni纳米线直径小于0.398nm时,其结构从无定形结构变为缺陷结构,结合能迅速上升,表明其结构稳定性降低;键角的分布也证明了以上结果的正确性.  相似文献   

11.
Cr-doped CdS nanowires were synthesized in large scale through thermal co-evaporation of CdS and metal Cr powders. General morphology, detailed microstructure and optical properties were characterized using various techniques. Devices consisting of individual Cr-doped CdS nanowire were fabricated and they exhibited remarkable rectifying characteristics. I-V curves of individual Cr-doped CdS nanowire devices demonstrate that the present nanowires are n-type doped and have high conductivity (10.96 \Omega -1cm-1, indicating great potential applications in nanoscale electronic and optoelectronic devices.  相似文献   

12.
Structural and magnetic properties of two-dimensional spatially ordered system of ferromagnetic nickel nanowires embedded into Al2O3 matrix have been studied using polarized small-angle neutron scattering. The small-angle diffraction pattern exhibits many diffraction peaks, which corresponds to the scattering from highly correlated hexagonal structure of pores and magnetic nanowires. Magnetic contribution to the scattering has complex behavior and cannot be explained without taking into account stray fields located between magnetized nanowires.  相似文献   

13.
14.
Under GGA, the structural, electronic and magnetic properties of single-wall (8, 8) GeC nanotubes filled with iron Fen nanowires (n = 5, 9, 13 and 21) have been investigated systematically using the first-principles PAW potential within DFT. We find that the initial shapes of the Fe5@(8, 8), Fe9@(8, 8) and Fe13@(8, 8) systems are preserved without any visible changes after optimization. But for the Fe21@(8, 8) system, the initial shapes are distorted largely for both nanowire and nanotube. The binding processes of Fen@(8, 8) systems are exothermic, and Fe5@(8, 8) system is the most stable structure. The pristine (8, 8) GeCNT is nonmagnetic and direct semiconductor with a wide band gap of about 2.65 eV. Projected densities of states onto different shell Fe atoms show that the separation between the bonding and antibonding d states is reduced as going from the core Fe atom to the outermost shell Fe atom. The spin polarization of the Fen@(8, 8) systems and free-standing nanowires are higher than that in bulk Fe. And the spin polarization generally decreases with the number n of the Fe atoms increasing for both the Fen@(8, 8) systems and free-standing nanowires. Both the largest spin polarization value itself and not more decrease with respect to value of free-standing Fe5 nanowire suggest the Fe5@(8, 8) system could be of interest for the use in electron spin injection. The magnetism is mainly confined within the inner Fe nanowire for these combined systems. More importantly, the Fe5 nanowire encapsulated inside (8, 8) GeCNT is under the protection of the GeCNT to prevent from oxidation, thus may stably exist in atmosphere for long time and can be expected to have potential applications in building nanodevices.  相似文献   

15.
The metal-assisted chemical etching of silicon in an aqueous solution of hydrofluoric acid and hydrogen peroxide is established for the fabrication of large area, uniform silicon nanowire (SiNW) arrays. In this study, silver (Ag) and gold (Au) are considered as catalysts and the effect of different catalysts with various thicknesses on the structural and optical properties of the fabricated SiNWs is investigated. The morphology of deposited catalysts on the silicon wafer is characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is shown that the morphology of the fabricated silicon nanostructures remarkably depends upon the catalyst layer thickness, and the catalyst etching time directly affects the structural and optical properties of the synthesized SiNWs. FESEM images show a linear increment of the nanowire length versus time, whereas the etching rate for the Au-etched SiNWs was lower than the Ag-etched ones. Strong light scattering in SiNWs caused the total reflection to decrease in the range of visible light, and this decrement was higher for the Ag-etched SiNW sample, with a longer length than the Au-etched one. A broadband visible photoluminescence (PL) with different peak positions is observed for the Au- and Ag-etched samples. The synthesized optically active SiNWs can be considered as a promising candidate for a new generation of nano-scale opto-electronic devices.  相似文献   

16.
Large-area boron nanowire(BNW) films were fabricated on the Si(111) substrate by chemical vapor deposition(CVD). The average diameter of the BNWs is about 20 nm, with lengths of 5–10 μm. Then, graphene-capped boron nanowires(GC-BNWs) were obtained by microwave plasma chemical vapor deposition(MPCVD). Characterization by scanning electron microscopy indicates that few-layer graphene covers the surface of the boron nanowires. Field emission measurements of the BNWs and GC-BNW films show that the GC-BNW films have a lower turn-on electric field than the BNW films.  相似文献   

17.
张国伟  杨在林  罗刚 《中国物理 B》2016,25(8):86203-086203
Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.  相似文献   

18.
We present the magnetization reversal dynamics of Co nanowires with competing magnetic anisotropies. The aspect ratio (R) of the nanowires is varied between 2.5 and 60, and we observe a cross-over of the directions of the magnetic easy and hard axes at R=6.8. Micromagnetic simulations qualitatively reproduce the observed cross-over and give detailed insight into the reversal mechanisms associated with the cross-over. The reversal mechanism for a field applied along the long axis of the nanowire exhibits a quasi-coherent rotation mode and a corkscrew-like mode, respectively, above and below the cross-over, with the formation of a Bloch domain near the cross-over region. For a field applied along the short axis, the reversal occurs by nucleation and propagation of reversed domains from the two ends of the nanowires for very high values of the aspect ratio down to the cross-over region, but it transforms into quasi-coherent rotation mode for smaller aspect ratios (below the cross-over region).  相似文献   

19.
Arrays of Ag/Cu alloy nanowires embedded in anodic alumina membranes (AAMs) were synthesized by directly electrodepositing from a mixing electrolyte solution containing Ag+ and Cu2+ ions. Manipulations of optical properties of the resulting samples were successfully achieved by tuning the molar ratio of Ag+ and Cu2+ ions in the starting materials. When the ratio is less than 2:20, two surface plasma resonance (SPR) peaks corresponding to Ag and Cu appear, respectively. After annealing treatment, the SPR peak corresponding to Cu disappears, and that of Ag presents a red shift. Furthermore, this red shift can be up to 85 nm when the molar ratio of Ag+ and Cu2+ reduce to 1:20, which is attributed to the transferable electrons from Cu atoms.  相似文献   

20.
基于密度泛函理论框架下的第一性原理计算,系统地研究了多壳层Cu纳米线的稳定结构和电子特性.得到不同线径多壳层Cu纳米线的平衡态晶格常数相差不大,都表现出金属特性,且其单原子平均结合能和量子电导随着纳米线直径的增加而增加.纳米线中内壳层Cu原子表现出体相结构Cu原子相似的电子特性,而表面壳层由于配位数的减少,其3d态能量范围变窄且整体向费米能级发生移动.电荷密度分析表明,相对于体相Cu晶体中原子间的相互作用,纳米线表面壳层Cu原子与其最近邻原子间的相互作用明显增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号