首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
《Physics letters. [Part B]》1988,212(3):277-282
We report a new family of supermembrane vacua possesing the Siegel symmetry. This family consists of bosonic solutions of supermembrane field equations and describes static, toroidal membranes in d=11 black hole spacetimes. The black holes we consider are obtained by embedding the d=4 Reissner-Nordström solutions into d=11, N=1 supergravity. We show that supermembranes pick, as their backgrounds, only the extreme Reissner-Nordström black holes and require the d=4 magnetic charge to be non-zero. Moreover, the membranes on dyonic holes can be interpreted, at the linearized level, as fluctuations of the membranes on magnetically charged holes. The quantisation around the toroidal membranes on the magnetically charged, extreme black holes therefore poses itself as an interesting problem.  相似文献   

2.
We consider the problem of constructing cosmological solutions of the Einstein–Maxwell equations that contain multiple charged black holes. By considering the field equations as a set of constraint and evolution equations, we construct exact initial data for N charged black holes on a hypersphere. This corresponds to the maximum of expansion of a cosmological solution, and provides sufficient information for a unique evolution. We then consider the specific example of a universe that contains eight charged black holes, and show that the existence of non-zero electric charge reduces the scale of the cosmological region of the space. These solutions generalize the Majumdar–Papapetrou solutions away from the extremal limit of charged black holes, and provide what we believe to be some of the first relativistic calculations of the effects of electric charge on cosmological backreaction.  相似文献   

3.
We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.  相似文献   

4.
In this paper, we first obtain the higher-dimen-sional dilaton–Lifshitz black hole solutions in the presence of Born–Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of \(z=n+1\) and \(z\ne n+1\) where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking–Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau–Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case \( z\ge 2\). For \(z<2\), it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while for large black holes, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz black holes for different values of z. We observe that small black holes are thermally unstable in some situations. Also, the behavior of the correlation between possible black hole molecules for large black holes is the same as for the linearly charged case. In both the linearly and the BI charged cases, for some choices of the parameters, the black hole system behaves like a Van der Waals gas near the transition point.  相似文献   

5.
Motivated by Kerner and Man’s fermions tunneling method of dimension 4 black holes, in this paper, we further improve the analysis to investigate Hawking radiation of charged Dirac particles with spin 1/2 from general non-extremal rotating charged black holes with two parameters and a non-zero cosmological constant in minimal five-dimensional gauged supergravity. For space-times with different horizon topology and different dimensions, constructing a set of appropriate γ μ matrices for general covariant Dirac equation is an important technique for the fermion tunneling method. By introducing a set of appropriate matrices γ μ and employing the ansatz for the spin-up spinor field, we successfully recovered the tunneling probability of charged Dirac particles and the expected Hawking temperature of the black hole, which is exactly consistent with that obtained by other methods. Moreover, the fermion tunneling method can be directly applied to the other five-dimensional charged black holes, which strengthens the validity and power of the fermion tunneling method.  相似文献   

6.
We investigate possible signatures of long-lived (or stable) charged black holes at the Large Hadron Collider. In particular, we find that black hole remnants are characterised by quite low speed. Due to this fact, the charged remnants could, in some cases, be very clearly distinguished from the background events, exploiting dE/dX measurements. We also compare the estimate energy released by such remnants with that of typical Standard Model particles, using the Bethe–Bloch formula.  相似文献   

7.
The “complexity = action” duality states that the quantum complexity is equal to the action of the stationary AdS black hole within the Wheeler–DeWitt patch at late time approximation. We compute the action growth rates of the neutral and charged black holes in massive gravity and the neutral, charged and Kerr–Newman black holes in f(R) gravity to test this conjecture. Besides, we investigate the effects of the massive graviton terms, higher derivative terms and the topology of the black hole horizon on the complexity growth rate.  相似文献   

8.
《Nuclear Physics B》1995,456(3):732-752
Following the work of Sen, we consider the correspondence between extremal black holes and string states in the context of the entropy. We obtain and study properties of electrically charged black hole backgrounds of tree level heterotic string theory compactified on a p-dimensional torus, for D = (10 − p) = 4,…,9. We study in particular a one-parameter extremal class of these black holes, the members of which are shown to be supersymmetric. We find that the entropy of such an extremal black hole, when calculated at the stringy stretched horizon, scales in such a way that it can be identified with the entropy of the elementary string state with the corresponding quantum numbers.  相似文献   

9.
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner–Nordström black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner–Nordströ m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincaré stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.  相似文献   

10.
Motivated by the well-known charged BTZ black holes, we look for (2 + 1)-dimensional solutions of F(R) gravity. At first we investigate some near horizon solutions and after that we obtain asymptotically Lifshitz black hole solutions. Finally, we discuss about rotating black holes with exponential form of F(R) theory.  相似文献   

11.
In this paper, we use semi-classical tunneling approach to calculate the quantum corrections to the Hawking temperature as well as entropy of the Kehagias-Sftesos asymptotically flat black hole solution and charged regular black hole with Fermi-Dirac distribution. For this purpose, we apply the first law of black hole thermodynamics to investigate the semi-classical entropy of both black holes having mass as well as charge or coupling constant. For both black holes, the entropy corrections contain the logarithmic term as a leading order correction term. For Kehagias-Sftesos asymptotically flat black hole, the semi-classical Hawking temperature and black hole entropy will behave asymptotically by considering the vanishing coupling constant b = 0. We have obtained the same analysis for the corrected thermodynamical quantities for this BH. For charged regular black hole with Fermi-Dirac distribution, if we neglect the charged effects in our analysis, i.e., q = 0, then these corrections approximately leads to the Schwarzschild black hole which is already given in the literature.  相似文献   

12.
In this paper, we devote to investigate the energy-momentum problem of higher dimensional black holes in the general theory of relativity. The energy and momentum complex of M?ller has been used for the calculations. Also, total energy and total momentum of some special cases for higher dimensional black holes such as Schwarzschild-like black holes, Reissner-Nordstr?m-like charged black holes, AdS-like black holes, topological black holes, BTZ-like and charged BTZ-like black holes were obtained. It is invented that the momentum of black holes vanishes everywhere while the energy of black holes are not equal to zero in higher dimension. Also the results agree with Yang and Radinschi or Vagenas results in three and four dimensional black holes, respectively (Jang and Radinschi in AIP Conf. Proc. 895, 325, 2007; Vagenas in Mod. Phys. Lett. A 21, 1947, 2006).  相似文献   

13.
Based on a mathematical lemma related to the Vandermonde determinant and two theorems derived from the first law of black hole thermodynamics, we investigate the angular momentum independence of the entropy sum as well as the entropy product of general rotating Kaluza-Klein black holes in higher dimensions. We show that for both non-charged rotating Kaluza-Klein black holes and non-charged rotating Kaluza-Klein-AdS black holes, the angular momentum of the black holes will not be present in entropy sum relation in dimensions d≥4, while the independence of angular momentum of the entropy product holds provided that the black holes possess at least one zero rotation parameter a j = 0 in higher dimensions d≥5, which means that the cosmological constant does not affect the angular momentum-free property of entropy sum and entropy product under the circumstances that charge δ=0. For the reason that the entropy relations of charged rotating Kaluza-Klein black holes as well as the non-charged rotating Kaluza-Klein black holes in asymptotically flat spacetime act the same way, it is found that the charge has no effect in the angular momentum-independence of entropy sum and product in asymptotically flat spactime.  相似文献   

14.
邹德成  吴超  张明  岳瑞宏 《中国物理C(英文版)》2020,44(5):055102-055102-9
We study quasinormal modes(QNMs)of charged black holes in the Einstein-Maxwell-Weyl(EMW)gravity by adopting the test scalar field perturbation.We find that the imaginary part of QNM frequencies is consistently negative for different angular parameters l,indicating that these modes always decay and are therefore stable.We do not observe a linear relationship between the QNM frequencyωand parameter p for these black holes,as their charge Q causes a nonlinear effect.We evaluate the massive scalar field perturbation in charged black holes and find that random long lived modes(i.e.,quasiresonances)could exist in this spectrum.  相似文献   

15.
《Nuclear Physics B》1996,476(3):515-547
It has been argued by Dyson in the context of QED in flat space-time that perturbative expansions in powers of the electric charge e cannot be convergent because if e is purely imaginary then the vacuum should be unstable to the production of charged pairs. We investigate the spontaneous production of such Dyson pairs in electrodynamics coupled to gravity. They are found to consist of pairs of zero rest mass black holes with regular horizons. The properties of these zero rest mass black holes are discussed. We also consider ways in which a dilaton may be included and the relevance of this to recent ideas in string theory. We discuss accelerating solutions and find that, in certain circumstances, the “no strut” condition may be satisfied giving a regular solution describing a pair of zero rest mass black holes accelerating away from one another. We also study wormhole and tachyonic solutions and how they affect the stability of the vacuum.  相似文献   

16.
The possibility of converting a Reissner-Nordström black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordström metric describes a black hole only when M2 > Q3 + P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed.  相似文献   

17.
In this paper, corrected entropy of a class of BTZ black holes, include charge and rotation, studied. We obtain corrected Bekenstein-Hawking entropy and find that effect of charge viewed at order A ?2, and effect of rotation viewed at order A ?6, therefore Q and J don’t have contribution in corrected entropy lower than the second order. We also write the first law of black hole thermodynamics for the case of charged rotating BTZ black hole.  相似文献   

18.
A universe described by braneworlds is studied in a cyclic scenario. As expected such an oscillating universe will undergo turnarounds, whenever the phantom energy density reaches a critical value from either side. It is found that a universe described by RSII brane model will readily undergo oscillations if, either the brane tension, λ or the bulk cosmological constant, Λ 4 is negative. The DGP brane model does not readily undergo cyclic turnarounds. Hence for this model a modified equation is proposed to incorporate the cyclic nature. It is found that there is always a remanent mass of a black hole at the verge of a turnaround. Hence contrary to known results in literature, it is found that the destruction of black holes at the turnaround is completely out of question. Finally to alleviate, if not solve, the problem posed by the black holes, it is argued that the remanent masses of the black holes do not act as a serious defect of the model because of Hawking evaporation.  相似文献   

19.
We discuss the problem of localization of 4D massless states in Randall-Sundrum 2 (one-brane) models. A Randall-Sundrum 2 construction starting from N=8 gauged supergravity in 5D anti-de Sitter space gives rise to an N=4 supergravity-matter system. We explicitly show that only the modes of the N=4 graviton supermultiplet localize on the 4D brane, streamlining and generalizing previous works. We also point out that while charged 1/4 BPS black holes do exist in the 4D theory, they are always produced in sets of total charge zero. This zero-charge configuration uplifts to a 5D metric without naked singularities, thus avoiding the curvature singularity of the 5D uplift of an isolated charged BPS black hole. Finally, we resolve a puzzle with localization of massless high spin fields on a (putative) Randall-Sundrum 2 construction based on Vasiliev?s high spin theories. We show that while high spin fields do localize, the gauge symmetry that ensures decoupling of their unphysical polarizations is anomalous. This implies that the high spin fields must acquire a mass.  相似文献   

20.
We study radiation of scalar particles from charged dilaton black holes. The Hamilton–Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein–Gordon equation. The procedure gives Hawking temperature for these black holes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号