首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable ignition and sustention of a pulsed discharge with a current of up to 180 A and duration of 12 μs at a pressure of 10−1–10−2 Pa are achieved in a glow-discharge plasma cathode with the help of an auxiliary initiating discharge. An electron emission current density of up to 100 A/cm2 and accelerating voltageof 15 kV are obtained in a gas-filled diode based on this type of a plasma cathode. An electron beam witha neutralized space charge can be transported almost without losses in a weak axial magnetic field alonga plasma channel formed due to the gas ionization by the accelerated electrons over a distance of up to 30 cm.  相似文献   

2.
Generation and transport of high-current electron beams are investigated in gas-filled diodes with plasma emitters based on arc and glow discharges. A space-charge neutralized beam with a current up to 1 kA was produced in a diode with a plasma emitter based on an arc discharge for an accelerating voltage of 15 kV. The beam is constricted from 8 cm down to 1 cm in diameter by a self-magnetic field and is transported through a distance of over 20 cm with an efficiency of 70%. A beam with a current of 80 A and a current density up to 100 A/cm2 was produced in a glow-discharge diode. The beam was transported through a distance of 30 cm in a weak axial magnetic field with induction B = 0.015 T.  相似文献   

3.
袁学松  鄢扬  刘盛纲 《物理学报》2011,60(1):14102-014102
采用等效媒质处理方法来研究有限引导磁场下沿纵向运动的相对论环形电子注.首先建立运动坐标系以电子注纵向速度匀速运动,在运动坐标系中电子注可以被考虑成静止的磁化等离子体,再通过四维空间的洛伦兹变换得到电子注在静止的实验室坐标系下可以被等效为双各向异性媒质,其不仅具有张量形式的电导率和磁导率,还具有手征特性.在此基础上同时考虑了由于电子注表面波动所引起的表面电流密度.采用该方法研究了有限引导磁场下圆柱波导中沿纵向运动的相对论环形电子注,推导出该模型的色散方程,并进行了数值计算.计算结果表明该研究方法能够得到更准 关键词: 相对论环形电子注 磁化等离子体 色散特性  相似文献   

4.
The process of space current neutralization of intense relativistic electron beam under an externally applied magnetic guide field is discussed in this paper. Ionization by electron avalanching and by beam electrons impact and recombination is included in the calculation of plasma density buildup, with plasma heating by return current and two- stream instability taken into account. A code to evaluate the process of space current neutralization was set up. The calculations demonstrate that the optimum gas pressure increases as peak beam current increases and it decreases as the risetime of beam pulse increases.  相似文献   

5.
In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an axial pulsed magnetic field having a peak value 1 T and duration 1 ms. The field is generated by the discharge of a capacitor bank into a solenoidal coil. A synchronization circuit ensures the generation of the electron beam at the instant when the axial magnetic field attains its peak value. The beam interacts with the SWS modes and generates microwaves due to Cherenkov interaction. Estimated power of 2 MW in TM01 mode is observed.   相似文献   

6.
An experimental investigation is made of the influence of local nonuniformities of a mirror-configuration magnetic field on oscillations of the space charge and the structure of a long-pulse relativistic electron beam. It is found that the outcome depends on the axial configuration of the nonuniformity. A nonuniformity near the cathode can substantially reduce the amplitude of the oscillations and improve the beam transport. The creation of a nonuniformity far from the cathode leads to an accelerated increase in the oscillations and causes spreading of the transverse structure of the beam. A possible explanation is given for the mechanism responsible for the influence of these local magnetic field nonuniformities assuming reflection of the cathode plasma and electron flux from the magnetic mirror, and also allowing for a jump in the drift velocity. Zh. Tekh. Fiz. 67, 83–88 (August 1997)  相似文献   

7.
We study the generation of electromagnetic pulses with a carrier frequency of 3.7 GHz in a relativistic backward-wave oscillator with a long slow-wave system in the superradiance regime of super-radiation for a magnetic induction of 0.2 T (below the cyclotron resonance). To decrease transverse velocities of the electrons, we use decompression of a hollow electron beam. Decompression in combination with a sharp leading edge of the high-voltage pulse (460 kV) applied to the explosive-emission cathode are used for increasing the cathode lifetime and improving the azimuthal uniformity of the beam. As a result, the achieved peak power of the microwave radiation amounts to 800 MW for a pulse duration of 2.5 ns and a repetition rate of 100 Hz. The uninterrupted operation in such a regime determined by the lifetime of the explosive-emission cathode is increased up to 105–106 pulses. The efficiency of conversion of the electron-beam power into the electromagnetic-wave power is increased up to 50%, The possibility of locking the electromagnetic oscillations phase by a sharp edge of the high-voltage pulse at the cathode was observed for the first time in such a relativistic generator. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 10, pp. 837–842, October 2006.  相似文献   

8.
This paper presents the results of experiments on two-stage heating of a dense plasma by a relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and a hydrogen density up to 1017 cm−3 was created in the main plasma, whose density was 1015 cm−3. In the process of interacting with the plasma, the electron beam (1 MeV, 40 kA, 4 μs) imparts its energy to the electrons of the main plasma through collective effects. The heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense plasma and impart their energy to it by pairwise collisions. Estimates based on experimental data are given for the parameters of the flux of hot plasma electrons, the energy released in the dense plasma, and the energy balance of the beam-plasma system. The paper discusses the dynamics of the plasma, which is inhomogeneous in density and temperature, including the appearance of pressure waves. Zh. éksp. Teor. Fiz. 113, 897–917 (March 1998)  相似文献   

9.
A theoretical analysis is made of the conditions for generation of electromagnetic waves by a thin cylindrical layer of relativistic electrons rotating in crossed axial magnetic and radial electrostatic fields in a cylindrical cavity. A dispersion equation is obtained to describe the interaction between waves and electrons under plasma resonance conditions. The dependence of the growth rates on the relativistic factor and the magnetic field are studied. Zh. Tekh. Fiz. 69, 112–114 (June 1999)  相似文献   

10.
The Faraday rotation of the plane of polarisation of a probe beam by azimuthal magnetic fields in the presence of beam deflection caused by refractive index gradients is discussed for a plasma carrying an axial current. A method for calculation of the magnetic field profile from experimental data is described. Bθ can be found by Abel inversion if the electron density is known and if deflected rays can be collected by an optical system and focussed onto a detector. Typical Faraday rotations calculated for the Bennett pinch assuming small beam deflection are found to be proportional to the plasma current and to the angle of deflection. If the probe beam wavelength is chosen to satisfy the approximate relation N0λ2 ≈ 3.5 × 1013 m-1, where N0 is the electron density on the axis, measurement of Bθ with beam deflections less than 2 × 10-2 radians should be possible in cases where small rotations can be detected in the mid-to-far infra-red part of the spectrum.  相似文献   

11.
The Fermi energy, pressure, internal energy, entropy, and heat capacity of completely degenerate relativistic electron gas are calculated by numerical methods. It is shown that the maximum admissible magnetic field on the order of 109 G in white dwarfs increases the pressure by a factor of 1.06 in the central region, where the electron concentration is ∼1033 cm−3, while the equilibrium radius increases by approximately a factor of 1.03, which obviously cannot be observed experimentally. A magnetic field of ∼108 G or lower has no effect on the pressure and other thermodynamic functions. It is also shown that the contribution of degenerate electron gas to the total pressure in neutron stars is negligible compared to that of neutron gas even in magnetic fields with a maximum induction ∼1017 G possible in neutron stars. The neutron beta-decay forbiddeness conditions in a superstrong magnetic field are formulated. It is assumed that small neutron stars have such magnetic fields and that pulsars with small periods are the most probable objects that can have super-strong magnetic fields.  相似文献   

12.
Millimeter-wave emission from the rippled-field magnetron (cross-field free electron laser (FEL)) is investigated experimentally and theoretically. In this device, electrons move in quasi-circular orbits under the combined action of a radial electric field, a uniform axial magnetic field, and a radial azimuthally periodic wiggler magnetic field. In excess of 300 kW of RF power is observed in two narrow spectral lines whose frequency can be tuned continuously from ~25 to ~50 GHz by variation of the axial magnetic field. The observations are interpreted as a FEL type of instability, associated with a resonance in the particle motion of a layer of electrons embedded in the dense spacecharge cloud. The resonance is shown to occur when 2kw?0 ? (?>0/?0) ?1 -(?p/?0)2, where kw is the wiggler wavenumber, ?0 is the azimuthal electron velocity, ?0 is the relativistic cyclotron frequency in the axial magnetic field, wp is the relativistic plasma frequency, and ?0 = [1 - (?0/c)2]-1/2 of the resonant electron layer.  相似文献   

13.
The return current induced in a plasma by a relativisitc electron beam generates a new electron-ion two-stream instability (return current instability). Although the effect of these currents on the beam-plasma e-e instability is negligible, there exists a range of wave numbers which is unstable only to return current (RC) instability and not to e-e instability. The electromagnetic waves propagating along the direction of the external magnetic field, in which the plasma is immersed, are stabilized by these currents but the e.m. waves with frequencies,ω 2Ω e 2ω pe 2 (Ω e andω pe being cyclotron and plasma frequency for the electrons of the plasma respectively) propagating transverse to the magnetic field get destabilized. Heuristic estimates of plasma heating, due to RC instability and due to decay of ion-acoustic turbulence generated by the return current, are made. The fastest time scale on which the return current delivers energy to the plasma due to the scattering of ion-sound waves by the electrons can be ∼ω pi −1 (ω pi being the plasma frequency for the ions).  相似文献   

14.
The properties of plasma injected into an open magnetic trap of uniform field from an independent UHF source have been investigated. Plasma is created in the UHF source at the frequency of 2400 MHz (power input 150 W) in the electron cyclotron resonance (ECR) regime at the pressure of neutral argon (10−5−10−2) torr. It is established that a rather quiescent target plasma with controlled density within the range of (2 × 108−2 × 1012) cm−3 and temperature 2–3eV is accumulated in the trap. It turned out that plasma lifetime in the trap is determined by a classical mechanism of particle escape at the expense of collisions, at fixed value of magnetic field in the trap it practically is not changed with the variation of neutral gas pressure and reaches the value ≈ 4×10−3 s at the magnetic field strength in the trap equal 1600 Oe.  相似文献   

15.
杨温渊  董烨  孙会芳  董志伟 《强激光与粒子束》2021,33(7):073001-1-073001-7
对全腔输出半透明阴极相对论磁控管做了进一步的改进,并对其进行了物理分析和三维全电磁粒子模拟研究。通过半透明阴极结构的改进,即改变阴极角向方位和阴极发射面高度参差设计以及局部参数优化,使得在较宽的工作参数范围内,器件起振初期可能出现的模式竞争得到抑制,起振时间进一步缩短,同时输出效率得到较大提高。在注入电子束电压和电流分别约为518 kV和4.1 kA、外加磁场为0.575 T时,模拟在S波段获得了效率大于66%、功率约1.42 GW的微波输出。同时还给出了电子束电压和外加磁场等参数在一定范围内变化时对输出性能的影响规律。研究结果可应用于高效紧凑型相对论磁控管的实验研究。  相似文献   

16.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

17.
An electron-emitting source generating a low-energy beam measuring 1–3 cm in diameter, with current up to 300 A, pulse duration within 50–200 μs, and pulse repetition frequency up to 10 Hz is investigated in a gas-filled diode with a mesh plasma cathode at the accelerating voltage up to 25 kV. The beam is transported in a longitudinal pulsed magnetic field to a distance of up to 30 cm towards the region of its interaction with a solid. For the current densities up to 100 A/cm2, it provides the power density as high as 10–100 J/cm2 sufficient to melt surfaces of metals, alloys, and composite (metalloceramic) materials within one or a few pulses. This makes this beam useful for modification of material surfaces and articles made thereof. Using the methods of optical, scanning and diffraction electron microscopy, by building micro-and nanohardness profiles, and via identification of the treated surface roughness, the phase composition and the substructure state of the materials subjected to pulsed low-energy e-beam of sub-millimeter durations are investigated. Formation of submicro-and nanocrystalline multi-phase structure is observed, which ensures a multiple increase in physico-mechanical and tribological characteristics of the treated material. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 60–70, May, 2008.  相似文献   

18.
It is shown that, while suppressing transverse electron motion, the axial magnetic field with an induction of up to 6.8 × 10−2 T in the gap of a plasma diode has no significant effect on the current instability and on the acceleration of ions at electron beam currents of ≤40 A. The increase in both the critical current and the period of current oscillations is related to an increase in the plasma density after applying the magnetic field. The maximum energy of the accelerated magnesium ions decreases by ≈25% at an induction of 1.7 × 10−2 T and does not depend on the magnetic field in the range (1.7–6.8) × 10−2 T.  相似文献   

19.
徐民健  吴京生 《物理学报》1985,34(9):1119-1125
本文分析了下述情况下的电子迴旋波的激射不稳定性:当相对性的单能高能电子斜向注入具有背景等离子体的磁场区域内,并且在电子等离子体频率与电子迴旋频率可以比拟时,考虑了背景等离子体密度远大于单能的高能电子的密度,以及与前者相反的两种情况。当单能的高能电子具有弱相对论性效应时,在电子迴旋频率的基频和二次谐波附近,分别有ο模和χ模的不稳定性存在。文中计算了这两种模的增长率,并作了讨论。 关键词:  相似文献   

20.
Observations of rapid axial oscillations of an intense relativistic electron beam in a magnetic mirror are reported. The mirror field primarily provides radial confinement of the relativistic electrons. The axial confinement was achieved by placing thin aluminized mylar foils at the conjugate mirror field maxima. The region between these foils was filled with a few Torr air to provide a beam induced plasma for charge and current neutralization. The regions outside these foils were maintained at ~10-4 Torr. One foil formed the anode of a space-charge limited relativistic electron diode which launched the beam into the mirror. When the beam passed through the second foil it was no longer charge neutralized. In a manner quite similar to the anode foil oscillations observed by others, a space-charge limited electrostatic well was established which stopped the electrons and re-accelerated them through the foil-thereby reflecting the beam. When the reflected electrons re-entered the diode, they were once again "electrostatically" reflected. This process continued until the oscillating beam was either lost through the "virtual cathodes" outside the foils, dissipated in the drift region or quenched in the diode plasma after gap closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号