首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine-sized ZnO–B2O3–CaO–Na2O–P2O5 glass powders with spherical shape were directly prepared by high temperature spray pyrolysis. The ZnO–B2O3–CaO–Na2O–P2O5 powders prepared by spray pyrolysis at temperatures above 1200 °C had broad peaks at around 30° in the XRD patterns. The glass transition temperatures (Tg) of the glass powders obtained by spray pyrolysis at preparation temperatures between 900 °C and 1400 °C were near 480 °C regardless of the preparation temperatures. The dielectric layers formed from the glass powders prepared by spray pyrolysis at preparation temperatures above 1300 °C had clean surface and dense inner structure at the firing temperature of 580 °C. The transmittance of the dielectric layer formed from the glass powders obtained by spray pyrolysis at preparation temperature of 1400 °C was 90% at the firing temperature of 580 °C, in which the thickness of the dielectric layer was 13 μm. The UV cutoff edges gradually shift towards longer wavelength with increasing the preparation temperature of glass powders and the firing temperature of dielectric layers.  相似文献   

2.
Gallium oxide nanowires were synthesized by electric arc discharge of GaN powders mixed with a small amount of Ni and Co. The crystal structure of nanowires was determined by multi-channel X-ray diffractometry (MC-XRD), FT-Raman spectroscopy and transmission electron microscopy (TEM). The analyzed results clearly show that the synthesized nanowires are monoclinic gallium oxide (β-Ga2O3). Final morphology and microstructure of β-Ga2O3 nanowires were changed depending on the presence of the transition metals into the nanowires. The β-Ga2O3 nanowires grown by the assistance of transition metals demonstrate a smooth edge surface while containing twin defects at the center. The transition metals have enhanced the step growth of nanowires. However, in the case of the β-Ga2O3 nanowires, where the transition metals are not shown on the surface, the nanowires demonstrate rather thin and long shapes with amorphous gallium oxide layers on the nanowire surface.  相似文献   

3.
Since 1980 much attention has been payed to hydrothermal processing. There are several papers related to hydrothermal fine Zirconia powders by authors 1), 2), 3) and 3).

The authors 3) prepared ZrO2 and Y2O3-ZrO2 powders under hydrothermal conditions. Several methods were used to prepare fine ZrO2 powders under hydrothermal conditions: hydrothermal precipatation, hydrothermal crystallization, hydrothermal oxidation, hydrothermal decomposition, hydrothermal synthesis, hydrothermal anodic oxidation, RESA (reactive electrode submerged arc) process, etc.

This paper describes hydrothermal precipatation processing of ZrO2 and Y-ZrO2 powder.  相似文献   


4.
High pure Ce(DPM)4, Gd(DPM)3, Y(DPM)3 and Zr(DPM)4 (DPM=dipivaloylmethanate=2,2,6,6-tetramethyl-3,5-heptanedionato) powders were successfully synthesized from inorganic salts and HDPM in ethanol/aqueous solution followed by recrystallization from toluene. Freshly prepared samples have been characterized by elemental analysis, X-ray diffraction, thermogravimetry-differential thermal analysis, nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. Aged samples, obtained by exposing fresh ones into air for 30 days, were also represented. Various structures, stabilities and volatilities result from different metal atoms and coordination numbers. Those metal β-diketonate chelates are served as precursors of metalorganic chemical vapor deposition for single and multi-component oxide thin films.  相似文献   

5.
Indium oxide (In2O3) nanobelts have been fabricated by thermal evaporation of metallic indium powders with the assistance of Au catalysts. The as-synthesized nanobelts are single-crystalline In2O3 with cubic structure, and usually tens of nanometers in thickness, tens to hundreds of nanometers in width, and several hundreds of micrometers in length. The room temperature photoluminescence spectrum of In2O3 nanobelts features a broad emission band at 620 nm, which could be attributed to oxygen deficiencies in the as-synthesized belts. The formation of In2O3 nanobelts follows a catalyst-assistant vapor—liquid–-solid growth mechanism, which enables the controlled growth of individual belts on predetermined sites.  相似文献   

6.
Zr---Al metallo-organic compounds (zircoaluminates), having (CH2)4COOH, (CH2)12CH3 and (CH2)2NH2 as the organofunctional groups, were treated preliminary by (1) spray-drying, (2) gelation of addition of 10% NH4OH aqueous solution followed by spray-drying and (3) rotary evaporation under a reduced pressure. After the treatment they were heated in air to prepare ZrO2---Al2O3 composite powders. The IR and DTA profiles for the treated compounds indicated that the procedures modified the structures for the zircoaluminates. The stability of tetragonal ZrO2 for the ZrO2---Al2O3 composite powder were dependent on the modification in the structure for the zircoaluminates. Balloon shaped particles, 0.5–2 μm in diameter, were obtained through procedure (1) and spherical particles, 1–4 μm in diameter, through (2). Tetragonal ZrO2 grains, 0.1–0.2 μm in diameter, were dispersed in the particles when heated at 1400°C.  相似文献   

7.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

8.
A glass rod of the PbO---K2O---B2O3---SiO2 system having a radial gradient of refractive index has been prepared by the sol-gel process using aqueous solutions of lead acetate and potassium nitrate as the sources for index-modifying cations. A gel prepared by gelatinizing a sol from the mixture of tetramethoxysilane, tetraethoxysilane, and the aqueous solutions of boric acid and lead acetate was placed in an aqueous solution of potassium nitrate to form the concentration gradient of modifier cations by diffusion through the micropores of the gel. The glass rod of about 7 mm in diameter obtained by drying and sintering the gel had a refractive index of parabolic profile changing from the center toward the perimeter with a maximum difference of about 0.04.  相似文献   

9.
Alkoxide derived gels were prepared in the system Na2O---B2O3---SiO2. The gel compositions were situated in the liquid-liquid immiscibility area of the phase equilibrium diagram.

Hydrolytic resistance tests were performed on the gels heat-treated at temperatures ranging between 120 to 850 °C. The Na2O, B2O3 and SiO2 extracted from the attack gels were analyzed. The experimental results indicate that the amount of B2O3 has a significant influence on the chemical durability of the heat-treated gels. At temperatures of 850 °C the greater the B2O3 mol% the greater are the amounts of Na2O and B2O3 extracted. Different behaviour was observed for gels heat-treated at 600 °C where the amounts of B2O3 and Na2O extracted slightly increases as the B2O3 mol% increases. Small amounts of extracted SiO2 were always observed.

These results are complemented with other measurements so that an explanation of the controlling mechanism is given.  相似文献   


10.
The colorless and transparent glasses in the Al2O3---B2O3---SiO3 system with high B2O3 and SiO2 content were prepared from gels at low temperature. Their IR spectra not only revealed the evolution of the gel to glass conversion, but also showed that the formation of mixed bonds in the glasses obtained did not show any effect due to the B2O3 content. The accuracy of the glass composition is dependent upon the SiO2/B2O3 molar ratio. The higher the ratio, the less the deviation of the analyzed compositions of the resulting glasses from their original calculated values. It is obvious that the higher the ratio, the lower the thermal expansion coefficient and the higher the transformation temperature of the glass, and the temperature at which the thermal contraction reaches an equilibrium is higher.  相似文献   

11.
Gels with composition xZrO2−(100−x)SiO2, X = 10−55, were prepared in different conditions using zirconium acetylacetonate and TEOS as precursors.

Gels treated at different temperatures up to 1100°C were characterized by X-ray diffraction, IR spectroscopy and TEM. Preparation conditions determined the subsequent development of crystalline phases following thermal treatment.

Monoclinic zirconia segregation dispersed in a silica matrix occurred when the gels were prepared in a strong hydrocloric acid medium. Preparation with a lower acid content favours instead the formation of very small crystals of tetragonal zirconia.  相似文献   


12.
Fresnoite type compound Sr2TiSi2O8 was found as a new nonlinear optical material. This compound was synthesized by substituting Sr2+ for Ba2+ in fresnoite Ba2TiSi2O8. X- ray diffraction data showed Sr2TiSi2O8 and fresnoite are isostructural. The second harmonic generation (SHG) effect of Sr2TiSi2O8 is about 8 times larger than that of KH2PO4 (KDP). The ultraviolet absorption edge of Sr2TiSi2O8 is around 270nm.  相似文献   

13.
Yellow coatings have been prepared from titanium tetraisopropoxide and cerium chloride by the sol-gel dip-coating process, and the transmittance, chromaticity, thickness and acidic durability of the coating films produced on glass or aluminum were studied. The effects of the pH of the solution on the preparation of the transparent and homogeneous coating films were studied by adding the alkali or acid, and as a result transparent and homogeneous yellow coating films were prepared by dipping the substrate in a solution containing acetic acidic solution. The acidic durability of the aluminum foil was improved by dip-coating the brilliant yellow CeO2-TiO2 coating three times.  相似文献   

14.
Ceramic materials with a very low thermal expansion coefficient are synthesized by the sol-gel process. The binary gel is obtained by hydrolysis and polycondensation reactions of organometallic compounds of aluminium and titanium. The thermal evolution of the amorphous powder is followed by DTA and TGA measurements. Structural evolution is followed using X-ray diffraction. The crystallization of the TiO2 rutile and Al2O3 corindon starts at 700 and 900°C respectively. The transformation of Al2O3 and TiO2 into Al2TiO5 appears between 1200 and 1300°C. The densification of the powder is performed by the hot pressing process. The shrinkage of the powder was previously followed by dilatometric measurements. The physical properties of the final material are studied as a function of pressing parameters.  相似文献   

15.
The surface morphology of Na2O–B2O3–Al2O3–SiO2 vitrified bond with and without calcium oxide was studied by soaking vitrified bonded microcrystalline alumina composites in water. The content of water introduced to the vitrified bond was determined by thermal gravity analysis, and the effects of water and calcium on the phase separation and nucleation of the vitrified bond were investigated using scanning electron microscope and energy-dispersive X-ray spectrometer. Soaked in water for 72 h, the Na2O–B2O3–Al2O3–SiO2 vitrified bond presented a porous surface, and its bending strength declined with increasing sintering temperature. However, the Na2O–CaO–B2O3–Al2O3–SiO2 vitrified bond was more durable against aqueous coolant even needle-shape crystals were found clustered on the surface of the vitrified bond. The crystals were enriched with aluminosilicate tested by energy-dispersive X-ray spectrums. The appearance of crystals lessened the dissolution of the vitrified bond and made the bending strength increase in the sintering temperature region between 870 °C and 930 °C.  相似文献   

16.
Praseodymium oxide was used for the gettering of background impurities from the melt, during In0.53Ga0.47As/InP LPE growth. The low amount of PrO2 in the growth solution enables one to prepare n-type In0.53Ga0.47As epitaxial layers with electron concentration in the range of 2 × 1014 to 2 × 1016 cm-3 and electron mobilities of 11,000 and 8400 cm2/V·s, respectively. These results were achieved without long time baking of the melt; homogenization lasted only 1 h. The electrical parameters and photoluminescence spectra of the grown layers are presented.  相似文献   

17.
Glasses in the system Na2O/B2O3/Al2O3/In2O3 were melted and subsequently tempered in the range from 500 to 700 °C. Depending on the chemical composition, various crystalline phases were observed. From samples without Al2O3, In2O3 could not be crystallized from homogeneous glasses, because either spontaneous In2O3 crystallization occurred during cooling, or other phases such as NaInO2 were formed during tempering. The addition of alumina, however, controlled the crystallization of In2O3. Depending on the crystallization temperature applied, the crystallite sizes were in the range from 13 to 53 nm. The glass matrix can be dissolved by soaking the powdered glass in water. This procedure can be used to prepare nano-crystalline In2O3-powders.  相似文献   

18.
W. Beier  A. A. G  ktas  G. H. Frischat 《Journal of Non》1988,100(1-3):531-537
Different solutions containing alkoxides of silicon, titanium, and zirconium have been prepared. Some of their properties like the time dependent viscosity and the gelling time have been measured and are reported here for different H2O, HCl, ethanol and/or formamide contents. Microscope slides have been dip coated in these solutions. After baking, film thickness and chemical durability have been determined.

In order to get good SiO2---TiO2---ZrO2 glass coatings, the withdrawal speed should not exceed 5 cm/min unless the viscosities of the solutions are reduced by the addition of ethanol. By such a dilution, the film thickness could also be reduced, while the addition of formamide caused a delayed increase of the viscosity and increased gelling times. For this reason, solutions containing formamide can be used for longer periods. The chemical durability of the substrates against boiling NaOH solution is enhanced by the SiO2---TiO2---ZrO2 glass coatings.  相似文献   


19.
Glasses of compositions 5ZrO2·5SiO2(ZS), 5ZrO2·Al2O3·4SiO2(ZAS) and 5 5ZrO2·0.5Al2O3·0.5Na2O·4SiO2(ZANS) were prepared by the sol-gel process from metal alkoxides and sintered to make glass-ceramics. Tetragonal ZrO2 was precipitated by heat treatment at 900 to 1300°C. The activation energy for tetragonal ZrO2 crystal growth was extremely high in Al2O3 containing glasses. ZAS and ZS were sintered to the near theoretical densities above 1200°C, at which the predominant phase was tetragonal ZrO2. On the other hand, for ZANS, high densification was not attained owing to the large pores enclosed by the glass phase. Strength and fracture toughness increased with the densification and the crystal growth of tetragonal ZrO2, reaching 450 MPa and 9 MN/m1.5, respectively.  相似文献   

20.
A series of titania-silica glasses with 0–9% TiO2 were fabricated using a sol/gel process. The sol was prepared by dispersing colloidal silica fume in an aqueous solution of titania which was synthesized through the acid-catalyzed hydrolysis of titanium isopropoxide. The sols gelled in 2–4 days, and then were dried for 6–8 days. The dry gels were sintered at 1450–1500°C to produce clear, dense, microstructure-free glasses. The gels underwent a total shrinkage of 50% to yield glass rods about 50 mm long and 5 mm in diameter, or glass discs about 4 cm in diameter and 5 mm thick. The drying step was most critical in the production of crack-free specimens.

In the gel, the transmission electron microscope (TEM) revealed the presence of 1–5 nm rutile microcrystallites uniformly distributed within a network of colloidal silica particles. After sintering to 1450–1500°C, though, a dense, transparent, microstructure-free glass was created. Fourier transform infrared spectroscopy (FTIR) verified the formation of an amorphous solid-solution of titania and silica after sintering.

The thermal expansion of the glasses was measured using a differential dilatometer. The average linear coefficients of thermal expansion (CTE @ 25–675°C) varied between +5 × 10−7 and −0.2 × 10−7°C−1 in the range 0 to 9% TiO2. The glass with 7.2% TiO2 exhibited a zero thermal expansion coefficient at 150–210°C. The hysteresis in CTE on heating and cooling was of the order of 0.01–0.02 ppm.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号