首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite-like nonstoichiometric oxide La x Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.313–7.354 Å) with cation-site vacancies has been prepared for the first time at high pressures (p = 6.0–8.0 GPa) and high temperatures (T = 700–1100°C). The compound has metal-type conductivity and paramagnetic properties, and undergoes a phase transition.  相似文献   

2.
The crystal structure of [Cu(En)2CrO4]n (En is ethylenediamine) is determined: a = 14.7359(4) Å, b = 9.8083(3) Å, c = 14.2664(4) Å, V = 2061.98(10) Å3, space group Cmce, Z = 8, dx = 1.931 g/cm3. It is demonstrated that the studied phase is isostructural with [Сu(Еn)2SO4]n. A pseudotetragonal copper atom coordination (Cu–N 2.0204 Å and 2.0244 Å, ∠N–Cu–N 84.73°) is completed to distorted octahedral by two oxygen atoms of chromate anions (Cu–O 2.433 Å and 2.380 Å).  相似文献   

3.
The structures of the Pd4(SBu)4(OAc)4 (I) and Pd6 (SBu)12 (II) palladium clusters are determined by the X-ray diffraction method. For cluster I: a = 8.650(2), b = 12.314(2), c = 17.659(4) Å, α = 78.03(3)°, β = 86.71(2)°, γ = 78.13(3)°, V = 1800.8(7) Å3, ρcalcd = 1.878 g/cm3, space group P \(\bar 1\), Z = 4, N = 3403, R = 0.0468; for structure II: a = 10.748(2), b = 12.840(3), c = 15.233(3) Å, α = 65.31(3)°, β = 70.10(3)°, γ = 72.91(3)°, V = 1767.4(6) Å3, ρ calcd = 1.605 g/cm3, space group P \(\bar 1\), Z = 1, N = 3498, R = 0.0729. In cluster I, four Pd atoms form a planar cycle. The neighboring Pd atoms are bound by two acetate or two mercaptide bridges (Pd…Pd 2.95–3.23 Å, Pd…Pd angles 87.15°–92.85°). In cluster II, the Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.09–3.14 Å, the PdPdPd angles being 118.95°–120.80°. The Pd atoms are linked in pairs by two mercaptide bridges. The formation of clusters I and II in solution is proved by IR spectroscopy and calorimetry. Analogous clusters are formed in solution upon the reaction of palladium(II) diacetate with thiophenol.  相似文献   

4.
The complex [Co(2-Me-Pyz)2(H2O)4](NO3)2 is synthesized and its structure is determined. The crystals are monoclinic: space group P21/n, a = 10.685(2) Å, b = 6.837(1), c = 12.515(3) Å, β = 91.84(3)°, V = 913.8(3) Å3, ρcalcd = 1.042 g/cm 3, Z = 2. The Co2+ ion (in the inversion center) is coordinated at the vertices of the distorted octahedron by two nitrogen atoms of methylpyrazine and four oxygen atoms of the water molecules (Co(1)–N(1) 2.180(3), average Co(1)–O(w) 2.079(3) Å, angles at the Co atom 87.9(1)–92.1(1)°). Supramolecular pseudometallocycles are formed in the structure through the O(w)–H…N(1) hydrogen bonds between the coordinated H2O molecules and the terminal nitrogen atoms of the 2-methylpyrazine molecules. Their interaction results in the formation of supramolecular layers joined by the NO3 groups into a three-dimensional framework.  相似文献   

5.
Thermal decomposition of [Pt(NH3)4][ReHlg6] binary complex salts (Hlg = Cl, Br) in a hydrogen atmosphere has been studied. Polycrystal X-ray diffractometry indicated that two-phase metallic systems are the final products of thermolysis. Structure refinement was performed for [Pt(NH3)4][ReCl6] by the combined technique involving decomposition of the diffractogram into individual reflections, isolation of reflections most sensitive to the position of separate light atoms, and full-profile analysis. Crystal data for PtReN4Cl6H12: a = 11.616(1) Å, b = 10.998(1) Å, c = 10.377(1) Å, V = 1148.1 Å3, space group Cmca, Z = 4, d x = 3.831 g/cm3. The indices are Rp = 5.48%, Rwp = 10.01%, R(F2) = 12.62%. The coordination polyhedron of Re is an almost regular octahedron: Re-Cl 2.34–2.36 Å, ∠ Cl-Re-Cl 86.9–90.3°; the coordination polyhedron of Pt is a square: Pt-N 2.04 Å, ∠N-Pt-N 90.4°.  相似文献   

6.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

7.
Perovskite-related oxide Tm x Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.262?7.273 Å) with vacancies in the cationic sublattice has been prepared for the first time under barothermal conditions (p = 7.0?9.0 GPa, T = 900?1100°C). Electric resistivity (10–300 K) and magnetic susceptibility (0–300 K) were studied as a function of temperature. Tm x Cu3V4O12 is shown to have a metallic conductivity and paramagnetism.  相似文献   

8.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

9.
Solid solutions Bi3Nb1–yWyO7 ± δ, Bi3Nb1–yVyO7 ± δ, Bi3Nb1–yFeyO7 ± δ (y = 0.1–0.5; Δy = 0.1), and Bi3–xYxNb1–yWyO7 ± δ (x = 0.05, 0.1; y = 0–0.3; Δy = 0.1) have been studied. The homogeneity ranges of the solid solutions and crystal-chemical parameters have been determined by means of X-ray powder diffraction. The electrical conductivity of sintered samples has been studied by impedance spectroscopy. The joint introduction of yttrium and tungsten into the niobium sublattice does not lead to an increase in the conductivity of solid solutions, and the change of the dopant type has no noticeable effect on this conductivity.  相似文献   

10.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

11.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

12.
The structure of aluminum(III) tris-dipivaloylmethanate (Bruker Nonius X8 Apex diffractometer with a 4K CCD detector, λMoK α, graphite monochromator, T = 150(2) K) is determined, and the synthetic procedure for its preparation is suggested. Crystal data are: C2/c space group, a = 28.1587(12) Å, b = 18.5170(7) Å, c = 21.5332(8) Å, β = 97.573(1)°, V = 11129.8(8) Å3, Z = 12, d x = 1.033 g/cm3, R = 6.93. The complex has a molecular structure; the aluminum atom is octahedrally surrounded by six oxygen atoms of three chelating ligands; Al-O distances are 1.860(2)–1.873(2)0A; O-Al-O angles fall within 88.08(9)–91.96(10)° and 177.93(9)–179.83(14)°. The known crystal packings of metal tris-dipivaloylmethanates are analyzed. Three types of the arrangement of the molecules in the crystals denoted as α, β, and γ are identified.  相似文献   

13.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

14.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

15.
The crystal structure of [Os(NH3)5Cl][ReCl6] has been refined by X-ray powder analysis: a = 11.645(3) Å, b = 8.3788(2) Å, c = 15.277(4) Å, β = 91.029(6)°, V = 1490(1) Å3, d x = 3.163 g/cm3, space group P21/m, Z = 4. The thermolysis product of the salt in a hydrogen atmosphere is a solid substitution solution Os0.5Re0.5: a = 2.753(2) Å, c = 4.366(3) Å, space group P63/mmc; coherent scattering region (CSR) is ~230 Å.  相似文献   

16.
Single crystals of triple molybdate of composition 5:1:3 K5Pb0.5Hf1.5(MoO4)6 have been grown and their crystal structure has been solved from X-ray diffraction data (an automated diffractometer X8 APEX, MoK α -radiation, 2173 F(hkl), R = 0.0321). Trigonal unit cell parameters are: a = b = 10.739(2) Å, c = 37.933(9) Å; V = 3789(1) Å3, Z = 6, ρcalc = 4.014 g/cm3, space group \(R\bar 3\). Three-dimensional mixed framework of the structure is formed by two types of MoO4 tetrahedra and Pb and Hf octahedra linking via common O-vertices. Potassium atoms of three types occupy large vacancies in the framework.  相似文献   

17.
CsZn2Br5 crystals are studied by X-ray diffraction. The compound crystallizes in the monoclinic system with the unit cell parameters a = 6.8880(12) Å, b = 10.4703(19) Å, c = 6.5197(9) Å, β = 108.25°, V = 446.55 Å3, ρcalcd = 4.960 g/cm3. Refractive indices are n p = 1.640 and n p = 1.754.  相似文献   

18.
A chelate compound Pb[(iso-C4H9)2PS2]2 is synthesized. Using X-ray diffraction data, the crystal structures of two modifications of this compound are determined (X8 APEX diffractometer, MoK α radiation, 14169 F hkl , R = 0.0480 for the low temperature α-form and 6261 F hkl , R = 0.0387 for the β-form studied at ambient temperature). The crystals are triclinic: a = 11.047(2) Å, b = 14.486(3) Å, c = 32.048(6) Å; α = 91.30(3)°, β = 99.73(3)°, γ = 101.61(3)°, V = 4942.9(17) Å3, Z = 8, ρcalc = 1.682 g/cm3 (α-modification) and a = 11.2124(5) Å, b = 14.6989(7) Å, c = 17.1644(6) Å; α = 109.393(1)°, β = 94.989(2)°, γ = 101.649(1)°, V = 2576.83(19) Å3, Z = 4, ρcalc = 1.613 g/cm3 (β-modification), space group \(P\bar 1\) for both polymorphs. The structures are molecular, coordination cores of PbS4 are tetragonal pyramids with Pb atoms in the vertices and S atoms in the base. In both structures intermolecular Pb...S contacts yield supramolecular ensembles comprising by four molecules, where PbS4+2 cores form planar aggregates of edge-sharing octahedra. The ensembles are joined by weak intermolecular S...S interactions resulting in the development of polymeric chains along the a axis.  相似文献   

19.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

20.
Attempts of the synthesis in air of complex oxides Sr3RhMnOx and Sr4Rh1.5Mn1.5Ox resulted in revealing formation of a new oxide phase Sr6.3Rh2.35Mn2.35O9 related to quasi-unidimensional family A3n+3m A′ n B3m+n O9m+6n at n = 1 and m = 1. Its structural characteristics and magnetic properties are studied. X-ray data of the obtained phase is indicated on the basis of trigonal cell (spatial group P321) with the parameters: a 9.6239(4) Å; c 1 4.1130(4) Å, c 2 2.4946(2) Å. Manganese and rhodium exist in the compound as the cations Mn4+, Rh3+ and Rh4+, as follows from the data of measuring of magnetic susceptibility in the range 2–300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号