首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient desorption ionization mass spectrometry   总被引:1,自引:0,他引:1  
Ambient desorption ionization mass spectrometry (MS) allows for the direct analysis of ordinary objects in the open atmosphere of the laboratory or in their natural environment. Analyte desorption usually accompanies the ionization step and these processes are often concerted, multi-step processes. Ambient desorption ionization methods typically require little or no sample preparation, offer a much simplified work flow and deliver unprecedented ease of use to MS analyses.

Since the introduction of desorption electrospray ionization (DESI [Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science (Washington, D. C.) 306 (2004) 471]) in 2004 and the direct analysis in real time (DART [R.B. Cody, J.A. Laramee, H.D. Durst, Anal. Chem. 77 (2005) 2297]) in 2005, this new field of MS has developed rapidly. Numerous permutations of the various options for analyte desorption and ionization have been demonstrated. Desorption steps, such as momentum transfer, dissolution into ricocheting droplets and thermal desorption, have been combined with ionization steps, including ESI, atmospheric pressure chemical ionization and photo-ionization. The large number of possible combinations of desorption and ionization components that have already been applied is creating a proliferation of techniques and acronyms that is becoming ever more complex.

Here, we provide a logical framework for the classification of these related experiments, based on the desorption and ionization processes involved in each.  相似文献   


2.
This work demonstrates that the desorption/ionization on self-assembled monolayer surface (DIAMS) mass spectrometry, a recent matrix-free laser desorption/ionization (LDI) method based on an organic target plate, is as statistically repeatable and reproducible as matrix assisted laser desorption ionization (MALDI) and thin gold film-assisted laser desorption/ionization (TGFA-LDI) mass spectrometries. On lipophilic DIAMS of target plates with a mixture of glycerides, repeatability/reproducibility has been estimated at 15 and 30% and the relative detection limit has been evaluated at 0.3 and 3 pmol, with and without NaI respectively. Salicylic acid and its d(6)-isomer analysis confirm the applicability of the DIAMS method in the detection of compounds of low molecular weight.  相似文献   

3.
Fragmentation frequently accompanies intact laser desorption ionization of a parent non-volatile compound, desorption and dissociation dynamics has been a subject of intense studies over the past decade. As a preliminary lest system for future laser desorption study of energetic compounds such as explosives and propellents, we studied UV laser desorption ionization of melamine at a laser power density of approximately 4.4 MW/cm2. Several gas-phase dissociation channels of the parent and fragment ions formed in UV laser desorption ionization of melamine films can be identified from their velocity distributions. A phenomenological desorption temperature of the order of 20000 K is estimated from fitting the experimental velocity distributions to Maxwellian functions.  相似文献   

4.
A combined setup for spatially resolved mass analysis of trace amounts of elements and macromolecules is presented. Using a MALDI-TOF mass spectrometer, a laser spectroscopic setup for resonant ionization of neutral atoms has been implemented. This allows for an efficient and selective detection of trace elements by means of resonance ionization mass spectrometry (RIMS). The instrumental scheme is described, and methodological developments are presented. In a first application pure, laser desorption/ionization with TOF-MS was used to measure mass distributions of cosmic nanodiamonds. For further applications regarding the spatially resolved ultra-trace analysis of elements in solid samples, an implanted target was used to characterize both laser desorption/ionization and laser desorption/resonance ionization for the detection of trace elements within. A perspective of the setup is given and future investigations are outlined.  相似文献   

5.
Infrared soft laser desorption/ionization was performed using a 2.94 µm Er : YAG laser and a commercial reflectron time-of-flight mass spectrometer. The instrument was modified so that a 337 nm nitrogen laser could be used concurrently with the IR laser to interrogate samples. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization and desorption/ionization on silicon with UV and IR lasers were compared. Various target materials were tested for IR soft desorption ionization, including stainless steel, aluminum, copper, silicon, porous silicon and polyethylene. Silicon surfaces gave the best performance in terms of signal level and low-mass interference. The internal energy resultant of the desorption/ionization was assessed using the easily fragmented vitamin B12 molecule. IR ionization produced more analyte fragmentation than UV-MALDI analysis. Fragmentation from matrix-free IR desorption from silicon was comparable to that from IR-MALDI. The results are interpreted as soft laser desorption and ionization resulting from the absorption of the IR laser energy by the analyte and associated solvent molecules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Knowledge of the major effects governing desorption/ionization efficiency is required for the development and application of ambient mass spectrometry. Although all triacylglycerols (TAG) have the same favorable protonation and cationization sites, their desorption/ionization efficiencies can vary dramatically during easy ambient sonic‐spray ionization because of structural differences in the carbon chain. To quantify this somewhat surprising and drastic effect, we have performed a systematic investigation of desorption/ionization efficiencies as a function of unsaturation and length for TAG as well as for diacylglycerols, monoacylglycerols and several phospholipids (PL). Affinities for Na+ as a function of unsaturation level have also been assayed via comprehensive metadynamics calculations to understand the influence of this phenomenon on the ionization efficiency. The results suggest that dipole–dipole interactions within a carbon chain tuned by unsaturation sites govern ionization efficiency of TAG and PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Porous poly(butyl methacrylate-co-ethylene dimethacrylate), poly(benzyl methacrylate-co-ethylene dimethacrylate), and poly(styrene-co-divinylbenzene) monoliths have been prepared on the top of standard sample plates used for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and the modified plates were used for laser desorption/ionization mass spectrometry (LDI-MS). The hydrophobic porous surface of these monoliths enables the transfer of sufficient energy to the analyte to induce desorption and ionization prior to TOFMS analysis. Both UV and thermally initiated polymerization using a mask or circular openings in a thin gasket have been used to define spot locations matching those of the MALDI plates. The desorption/ionization ability of the monolithic materials depends on the applied laser power, the solvent used for sample preparation, and the pore size of the monoliths. The monolithic matrices are very stable and can be used even after long storage times in a typical laboratory environment without observing any deterioration of their properties. The performance of the monolithic material is demonstrated with the mass analysis of several small molecules including drugs, explosives, and acid labile compounds. The macroporous spots also enable the archiving of samples.  相似文献   

8.
Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.  相似文献   

9.
王红磊  胡勇军  邢达 《分析化学》2011,39(2):276-282
激光光电离技术已广泛应用于质谱领域.基于单束激光的基质辅助激光解析(MALDI)质谱分析方法,已成为质谱分析生物大分子的标准方法之一.本文介绍的是另一种新的激光质谱分析方法:双步激光解析/激光电离质谱法(L2MS),与MALDI相比,该方法不需要加入与样品形成共结晶的基质,同时可通过独立地改变两束激光的光强和波长达到优...  相似文献   

10.
Spray desorption collection (SDC) and reflective electrospray ionization (RESI) were used to independently study the desorption and ionization processes that together comprise desorption electrospray ionization (DESI). Both processes depend on several instrumental parameters, including the nebulizing gas flow rate, applied potential, and source geometries. Each of these parameters was optimized for desorption, as represented by the results obtained by SDC, and ionization, as represented by the results obtained by RESI. The optimized conditions were then compared to the optimization results for DESI. Our results confirm that optimal conditions for desorption and ionization are different and that in some cases the optimized DESI conditions are a compromise between both sets. The respective results for DESI, RESI, and SDC for each parameter were compared across the methods to draw conclusions about the contribution of each parameter to desorption and ionization separately and then combined within DESI. Our results indicate that desorption efficiency is (1) independent of the applied potential and (2) the impact zone to inlet distance, and that (3) gas pressure settings and (4) sprayer to impact zone distances above optimal for DESI are detrimental to desorption but beneficial for ionization. In addition, possible interpretations for the observed trends are presented.  相似文献   

11.
邹晓伟  刘星  张建明 《色谱》2023,41(1):24-36
薄层色谱(TLC)是一类非常实用的液相色谱方法,由于其装置简单、操作便捷、灵活、通量高、成本低,以及样品前处理简单等优点,在许多行业的检测中都有广泛的应用并扮演着重要的角色。随着现代检测技术的不断发展以及各种检测技术综合应用程度的加深,薄层色谱与质谱的联用(TLC-MS)也成为这一方法的重要发展方向。随着我国医药、食品、科学仪器等事业的不断发展和升级,相信薄层色谱-质谱联用技术可以起到更好的作用,并迎来发展的契机。该综述将目前薄层色谱-质谱的联用形式分为3类,一是接口仪器的间接联用,二是质谱对薄层板的原位检测,三是质谱对薄层分离过程的实时监测,并按此分类对典型的联用形式进行了总结和简要描述。随着薄层色谱-生物自显影技术的广泛使用,薄层色谱与质谱联用的技术方法极大地提高了食品、药用生物活性物质的研发效率。目前,薄层色谱与质谱联用发展的主要瓶颈是“即插即用”型部件的设计和商品化。具有实时监测功能,同时又兼备灵活扫描功能和高通量特点的TLC-MS技术也很令人期待。此外,不同种类TLC-MS解吸-电离技术的对比研究也是有待讨论的应用问题。  相似文献   

12.
本研究设计并搭建了一套热解析低温等离子体电离源(TD-LTP),与质谱联用实现了糯高粱中农药残留的快速和高灵敏检测.TD-LTP由热解析装置和低温等离子体放电源两部分组成,农药残留样品首先在热解析进样器内汽化,再由载气载带进入等离子体区域被电离.热解析进样器使LTP产生的气相等离子体与样品之间的气-固或气-液相互作用转变为气-气相互作用,大大提高了难挥发样品(如农药)的电离效率;电离源与质谱进样口之间采用同轴连接,提高了离子的利用率和传输效率.与传统的LTP电离源相比,TD-LTP电离源的灵敏度提高了8倍以上,稳定性提高了4倍.本研究对热解析低温等离子体电离源的各参数进行了优化,并与自制的矩形离子阱质谱相结合,研究了12种农药在该电离源下的特征离子.最后,将此电离源与商品化的三重四极杆质谱仪联用,对糯高粱样品中的12种农药残留进行了快速筛查,结果表明,本方法灵敏度高,可以满足食品安全国家标准规定的谷物中农药残留最大限量检测要求.  相似文献   

13.
《Analytical letters》2012,45(8):1498-1520
Amalgamation of mass spectrometry (MS) and proteomics has led to the most awaited technological inventions such as discovery of clinically potential biomarkers and generation of effective drugs. This review focuses on the synergistic growth in MS instrumentation, proteomics and its impact on biomedical sciences. Novel ionization methods: surface enhanced laser desorption ionization, electrospray assisted laser desorption ionization, desorption electrospray ionization, laser diode thermal desorption are discussed. Different mass analyzers: ion trap, time-of-flight, Fourier transform ion cyclotron resonance and their applications are outlined. New ion fragmentation techniques: electron capture dissociation, electron transfer dissociation, infrared multiphoton dissociation and their attributes are described.  相似文献   

14.
Intracluster proton transfer from the matrix-assisted laser desorption/ionization matrix 2,5-dihydroxybenzoic acid (DHB) to the peptide valyl-prolyl-leucine has been investigated as a function of excitation laser wavelength and power. Ionization laser power studies at 308 nm indicate that cluster ionization occurs with a two-photon dependence, whereas matrix-to-analyte proton transfer and cluster dissociation requires an additional photon. At 266 nm, two-photon absorption leads to both cluster ionization and cluster dissociation/proton transfer. A consideration of these results clearly indicates that analyte protonation occurs following ionization of the cluster to produce a radical cation matrix/analyte cluster. Mass spectral features also indicate that mixed DHB/peptide cluster ionization can occur via two-photon ionization at wavelengths as long as 355 nm. These results suggest a reduction in the ionization potential of larger mixed DHB/peptide clusters of greater than 1 eV. The reduced ionization potential seen in these clusters suggests that radical cation initiated proton transfer remains a viable mechanism for analyte protonation in matrix-assisted laser desorption/ionization at these longer wavelengths.  相似文献   

15.
The study of the key parameters impacted surface‐assisted laser desorption/ionization‐mass spectrometry is of broad interest. In previous studies, it has been shown that surface‐assisted laser desorption/ionization‐mass spectrometry is a complex process depending on multiple factors. In the presented study, we showed that neither porosity, light absorbance nor surface hydrophobicity alone influence the enhancement phenomena observed from the hybrid metal‐semiconductor complexes versus individual targets, but small changes in the analyte attaching to the target significantly affect laser desorption ionization‐efficiency. By means of Raman spectroscopy and scanning electron microscopy, it was revealed that the formation of an amorphous analyte layer after drying on a solid substrate was essential for the enhanced laser desorption ionization‐signal observed from the hybrid metal‐semiconductor targets, and the crystallization properties of the analyte appeared as a function of the substrate. Obtained results were used for the screening of regular and lactose‐free milk samples through the hybrid metal‐semiconductor target. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In matrix-assisted laser desorption/ionization (MALDI), the true molecular structures of some analytes are not represented by the observed ions due to a redox reaction. In earlier reports, electron transfer from analyte to chemical matrix has been proposed for the oxidation of ferrocene derivatives in MALDI. To address such a redox phenomenon in laser desorption/ionization processes, two ferrocene derivatives, FcCH2CH2Fc and FcCH2NMe2 [Fc:(CsHs)Fe(CsH4)], were analyzed by a matrix-free method, desorption/ionization on porous silicon (DIOS). The oxidized species, Fc+CH2NMe2 and FcCH2CH2Fc+, were detected in the DIOS mass spectra. The results suggested that electron transfer from the analytes to the sample target occurs during the ionization process.  相似文献   

17.
This report describes a new high-resolution linear time-of-flight mass spectrometer that has been constructed at this institute. The instrument is used for investigations of both direct and matrix-assisted laser desorption/ionization of large molecules. A unique feature of this new instrument is the incorporation of a 10-cm postsource pulse-focusing region for enhancing the resolution of the detected ion signals. This technique can correct for both high initial ion translational energies and long durations of ion formation and is expected to be particularly well suited for laser desorption/ionization applications. Results of calculations are presented to illustrate the gains in mass resolution that may be expected for a variety of ion formation conditions. In addition, initial experimental results are presented that demonstrate the capability of this new instrument to produce high-resolution ion signals. Signals with mass resolutions as high as 2750 (full width at half maximum) have been obtained for both direct and matrix-assisted laser desorption/ionization signals.  相似文献   

18.
Summary A general surface analysis method has been developed based on non-selective photoionization of sputtered or desorbed neutral atoms and molecules above the surface, followed by time-of-flight mass spectrometry. The approach, currently utilizes two main types of ionizing radiation and a variety of desorption probes. For photoionization, coherent untuned sources are used; an intense focused pulsed UV laser beam is used for non-resonant multiphoton ionization to give elemental and limited chemical information, usually used for inorganic analysis; a coherent VUV source is used for single-photon ionization at 118 nm (10.5 eV) produced by frequency tripling of 355 nm light from a Nd:YAG laser. This paper focuses on single-photon ionization for inorganic systems. The desorption probes used are ion, electron, and laser beams as well as thermal desorption. For depth profiling, ion beams are specifically used. Any focused desorption probe beam can provide lateral spatial resolution.  相似文献   

19.
Large thermally labile molecules were not amenable to mass spectrometric analysis until the development of atmospheric pressure evaporation/ionization methods, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), since attempts to evaporate these molecules by heating induces degradation of the sample. While ESI and MALDI are relatively soft desorption/ionization techniques, they are both limited to preferential ionization of acidic and basic analytes. This limitation has been the driving force for the development of other soft desorption/ionization techniques. One such method employs laser-induced acoustic desorption (LIAD) to evaporate neutral sample molecules into mass spectrometers. LIAD utilizes acoustic waves generated by a laser pulse in a thin metal foil. The acoustic waves travel through the foil and cause desorption of neutral molecules that have been deposited on the opposite side of the foil. One of the advantages of LIAD is that it desorbs low-energy molecules that can be ionized by a variety of methods, thus allowing the analysis of large molecules that are not amenable to ESI and MALDI. This review covers the generation of acoustic waves in foils via a laser pulse, the parameters affecting the generation of acoustic waves, possible mechanisms for desorption of neutral molecules, as well as the various uses of LIAD by mass spectrometrists. The conditions used to generate acoustic or stress waves in solid materials consist of three regimes: thermal, ablative, and constrained. Each regime is discussed, in addition to the mechanisms that lead to the ablation of the metal from the foil and generation of acoustic waves for two of the regimes. Previously proposed desorption mechanisms for LIAD are presented along with the flaws associated with some of them. Various experimental parameters, such as the exact characteristics of the laser pulse and foil used, are discussed. The internal and kinetic energy of the neutral desorbed molecules are also considered. Our research group has been instrumental in the development and use of LIAD. For example, we have systematically examined the influence of many parameters, such as the type of the foil and its thickness, as well as the analyte layer's thickness, on the efficiency of desorption of neutral molecules. The coupling of LIAD with different instruments and ionization techniques allows for broad use of LIAD in our research laboratories. The most important applications involve analytes that cannot be analyzed by using other mass spectrometric methods, such as large saturated hydrocarbons and heavy hydrocarbon fractions of petroleum. We also use LIAD to characterize lipids, peptides, and oligonucleotides. Fundamental research on the reactions of charged mono-, bi-, and polyradicals with biopolymers, especially oligonucleotides, also requires the use of LIAD, as well as thermochemical measurements for neutral biopolymers. These are but a few of the uses of LIAD in our research group.  相似文献   

20.
利用一步紫外激光脱附和电离的飞行时间质谱法,测定了几种芳香烃分子:苯并[e]芘、荧蒽、肉桂酸和2,5-二羟基苯甲酸的质谱。实验结果发现,苯并[e]芘发生有效的“软”电离,属于双光子电离过程。而荧蒽需吸收三个光子才能电离。对2,5-二羟基苯甲酸和肉桂酸,在紫外脉冲激发作用下除了自身电离外,还发生了分子离子反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号