首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoemission Electron Microscopy was used to determine basic factors for nucleation and growth of thin pentacene films. Dependence of both substrate chemistry and deposition rate on the nucleation density was observed. On SiO2 pentacene shows a high nucleation density and forms small islands consisting of almost vertically oriented molecules. On Si(001) the nucleation density of this thin-film phase is much smaller, but the pentacene film first forms a flat-lying wetting layer. The thin-film phase only forms on top of this wetting layer. Adsorption of a cyclohexene self-assembled monolayer on Si(001) prior to the pentacene growth suppresses the initial pentacene wetting layer but maintains diffusion parameters similar to pentacene on Si(001). The nucleation of pentacene layers on cyclohexene/Si(001) can be described by classical nucleation theory with a critical nucleus size i6. Simple surface modification techniques such as e-beam irradiation of the substrates prior to pentacene adsorption can also have a significant effect on the pentacene nucleation density. PACS 68.37.Nq; 68.43.Fg; 68.47.Fg; 68.55.Ac  相似文献   

2.
窄通道过冷沸腾汽化核心密度及汽泡脱离频率的影响因素   总被引:1,自引:0,他引:1  
本文以水为工质,研究了工况参数对竖直矩形窄缝流道内上升过冷流动沸腾的汽化核心密度和汽泡脱离频率的影响。研究发现,流道间隙越小则汽化核心密度越大,汽化核心密度和最小成核半径存在定量关系;热流密度增大、过冷度降低或压力升高都使汽泡脱离频率增大,热流密度增大时,压力对汽泡脱离频率的影响增大。  相似文献   

3.
 在微波等离子体化学气相沉积装置中,研究了金刚石薄膜在Si (100)面上的负偏压形核行为,结果表明,偏压大小对金刚石的形核均匀性有显著影响,而甲烷浓度主要影响形核时间,对金刚石的最大核密度影响不大。在硅片尺寸小于钼支撑架时,形核行为存在明显的边缘效应,即在偏压值低于-150 V时,硅片边缘金刚石核密度急剧降低,远低于硅片中央;在甲烷浓度比较低时,硅片边缘核密度要高于中间。研究表明,造成这种现象的主要原因是硅片下的钼支撑架发射电子所致,过量的原子H对金刚石的形核是不利的。  相似文献   

4.
张金风  许晟瑞  张进成  郝跃 《中国物理 B》2011,20(5):57801-057801
Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers:(A) a GaN nucleation layer deposited at low temperature(LT);(B) an AlN nucleation layer deposited at high temperature;or(C) an LT thin AlN nucleation layer with an AlN layer and an AlN/AlGaN superlattice both subsequently deposited at high temperature.The samples have been characterized by Xray diffraction(XRD),atomic force microscopy and photoluminescence.The GaN layers grown using nucleation layers B and C show narrower XRD rocking curves than that using nucleation layer A,indicating a reduction in crystal defect density.Furthermore,the GaN layer grown using nucleation layer C exhibits a surface morphology with triangular defect pits eliminated completely.The improved optical property,corresponding to the enhanced crystal quality,is also confirmed by temperature-dependent and excitation power-dependent photoluminescence measurements.  相似文献   

5.
In order to clarify the mechanism of nucleation of ice induced by ultrasound, ultrasonic waves have been applied to supercooled pure water and degassed water, respectively. For each experiment, water sample is cooled at a constant cooling rate of 0.15 °C/min and the ultrasonic waves are applied from the water temperature of 0 °C until the water in a sample vessel nucleates. This nucleation temperature is measured. The use of ultrasound increased the nucleation temperature of both degassed water and pure water. However, the undercooling temperature for pure water to nucleate is less than that of degassed water. It is concluded that cavitation and fluctuations of density, energy and temperature induced by ultrasound are factors that affect the nucleation of water. Cavitation is a major factor for sonocrystallisation of ice.  相似文献   

6.
温度对Si上MOCVD-ZnO成核与薄膜生长特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用金属有机化学气相沉积(MOCVD)方法在Si衬底上进行了ZnO的成核与薄膜生长研究。ZnO薄膜的形貌和结晶特性由成核和后期生长过程共同决定,初期成核温度决定了其尺寸和密度,进而影响后期ZnO主层的生长行为,但由于高温对后期ZnO纳米柱横向生长的抑制,纳米柱的尺寸并没有因为成核尺寸的增大而变大,因此在560℃得到了晶柱尺寸最大、密度最小的ZnO薄膜。最后通过改变成核温度,优化了ZnO外延膜的结晶质量。  相似文献   

7.
Optical emission spectroscopy (OES) was used to study the plasma generated by the activation of the gas phase CH4 + H2 both by hot filaments and by a plasma discharge (DC HF CVD) during the nucleation of CVD diamond. The effects of nucleation parameters, such as methane concentration and extraction potential, on the plasma chemistry near the surface were investigated. The density of the diamond nucleation and the quality of the diamond films were studied by scanning electron microscopy (SEM) and Raman scattering, respectively. The OES results showed that the methane concentration influenced strongly the intensity ratio of Hβ-Hα implying an increase of electron mean energy, as well as CH, CH+, C2. A correlation between the relative increase of CH+ and the diamond nucleation density was found, conversely the increase of C2 contributed to the introduction of defects in the diamond nuclei.  相似文献   

8.
 提出了金刚石在衬底表面凹缺陷内成核的理论,指出凹缺陷尺度对于金刚石成核有着决定性作用,合适的凹缺陷将使成核率达到最大。并且讨论了该理论对于试图通过控制衬底表面缺陷来控制金刚石成核密度等人工微结构设计研究的意义。  相似文献   

9.
Recent experiments on epitaxial growth of metals on graphene have shown a strong dependence of island densities on coverage. These investigations cannot be explained by the standard mean-field nucleation theories. To understand them, we extend to higher coverage the former theory of rate equations developed for the initial state of nucleation, in a system where adsorbate interaction is included. We account for that, in the case of high coverage, the repulsive interaction influences both the attachment of monomers to clusters and the mobility of atoms. In our work we analyze the modification of the dependence of the island density on coverage, temperature and F/D ratio. In some regimes our theory results in the experimentally observed substantial growth of island density with coverage for a high deposited amount and a weak dependence on deposition rate F. We also find out the local maxima in temperature dependence of island density, as a consequence of long-range repulsive interactions.  相似文献   

10.
Hua Xie 《中国物理 B》2022,31(11):114701-114701
To discover the microscopic mechanism responsible for cavitation nucleation in pure water, nucleation processes in pure water are simulated using the molecular dynamics method. Cavitation nucleation is generated by uniformly stretching the system under isothermal conditions, and the formation and development of cavitation nuclei are simulated and discussed at the molecular level. The processes of energy, pressure, and density are analyzed, and the tensile strength of the pure water and the critical volume of the bubble nuclei are investigated. The results show that critical states exist in the process of cavitation nucleation. In the critical state, the energy, density, and pressure of the system change abruptly, and a stable cavitation nucleus is produced if the energy barrier is broken and the critical volume is exceeded. System pressure and water density are the key factors in the generation of cavitation nuclei. When the critical state is surpassed, the liquid is completely ruptured, and the volume of the cavitation nucleus rapidly increases to larger than 100 nm3; at this point, the surface tension of the bubble dominates the cavitation nucleus, instead of intermolecular forces. The negative critical pressure for bubble nucleation is -198.6 MPa, the corresponding critical volume is 13.84 nm3, and the nucleation rate is 2.42×1032 m-3·-1 in pure water at 300 K. Temperature has a significant effect on nucleation: as the temperature rises, nucleation thresholds decrease, and cavitation nucleation occurs earlier.  相似文献   

11.
The initial stages of InAs(001) homoepitaxial growth are investigated using a combination of kinetic Monte Carlo simulations based on ab initio density functional theory and scanning tunneling microscopy. In the two dimensional island nucleation mode investigated, the island number density is found to decrease with increasing As. This behavior is explained by a suppression of the effective In-adatom density leading to a reduction in island nucleation. The relevant microscopic processes responsible for this reduction are identified.  相似文献   

12.
Influence of the ultrasound intensity (28 kHz, 1.1–7.5 W/cm2) on CaCO3 nucleation-growth on the surface of a cylinder mild steel electrode rotating at 500 rpm was studied in tap water. The deposition kinetics was analyzed by chronoamperometry; the calcareous layer was characterized by gravimetry, scanning electron microscopy and XRD. Application of ultrasound to calcium carbonate crystallization affects nucleation site density, mass-transport rate and cavitation erosion of the deposits. Lower intensity ultrasound reduces scale porosity and area density by increasing nucleation site density and accelerating the mass transport. Higher intensity ultrasound promotes cavitation erosion of the formed layer, thus cleaning the surface from the scale. A scale layer with the highest blocking properties formed under applied ultrasound intensity of 1.9 W/cm2. The ultrasound doubled crystallization rate, reduced the scale porosity 5 times and halved its area density compared to non-sonicated conditions. Ultrasound of controllable intensity can solve both scale and corrosion problems of industrial heat-exchange equipment by forming a protective scale layer and removing excessive deposits.  相似文献   

13.
建立了一个分子动力学研究蒸汽异质核化的模型,对氩蒸汽异质核化进行MD模拟研究。氩蒸气的初始温度为300 K,冷却终温为80 K,冷却速率为0.0002 m/s。异质核化成核现象表明核化均以固体颗粒为核化中心,核化温度高于均质核化。同时统计了不同氩蒸汽粒子数异质核化的核化团簇的密度、法向压力、切向压力分布,计算团簇的表面...  相似文献   

14.
We used the tip of an atomic force microscope (AFM) in the contact mode to scratch/rub the surface of a glassy polymer thin film, i.e., isotactic polystyrene (i-PS) at room temperature. After subsequent isothermal crystallization, an extremely high nucleation density of edge-on crystals within the rubbed region or at the edge of the scratched area was observed. Furthermore, a transition from edge-on to flat-on lamellae occurred beyond a certain distance from the edge of the scratched region. Our results demonstrate that both, soft rubbing or hard scratching, allow to lower the nucleation barrier for polymer crystallization and to control the orientation of the resulting crystalline lamellae. The role of scratching/rubbing on chain deformation and its relation to nucleation and crystal orientation in polymer thin films is discussed.  相似文献   

15.
Surfactant-mediated epitaxial growth is studied with a realistic model, which includes three main kinetic processes: diffusion of adatoms on the surfactant terrace, exchange of adatoms with their underneath surfactant atoms, and reexchange in which an exchanged adatom resurfaces to the top of the surfactant layer. The scaling behavior of nucleus density and island size distributions in the initial stage of growth is investigated by using kinetic Monte Carlo simulations. The results show that the temperature dependence of nucleus density and island size distributions governed by the reexchanging-controlled nucleation at high temperatures exhibits similar scaling behavior to that obtained by the standard diffusion-mediated nucleation at low temperatures. However, at intermediate temperatures, the exchanging-controlled nucleation leads to an increase of nucleus density with temperature, while the island size distribution scales to a monotonically decreasing function, showing nonstandard scaling behavior.  相似文献   

16.
A comprehensive simulation model---deposition, diffusion, rotation and aggregation---is presented to demonstrate the post-deposition phenomena of multiple cluster growth on liquid surfaces, such as post-deposition nucleation, post-deposition growth and post-deposition coalescence. Emphasis is placed on the relaxations of monomer density, dimer density and cluster density as well as combined cluster-plus-monomer density with time after deposition ending. It is shown that post-deposition coalescence largely takes place after deposition due to the large mobility of clusters on liquid surfaces, while the post-deposition nucleation is only possible before the saturation cluster density is reached at the end of the deposition. The deposition flux and the moment of deposition ending play important roles in the post-deposition dynamics.  相似文献   

17.
混合悬浮液中纳米颗粒对核化形态的影响   总被引:2,自引:0,他引:2  
均相沸腾活化核心的形成靠液体分子(或密度)脉动形成,低过热温度下临界活化核心比纳米颗粒本身粒径要大很多,颗粒添加的影响相对很小,依旧保持为均相沸腾。随着液体过热温度的增加至临界活化核心与颗粒尺寸可比时,颗粒才有可能成为新的活化核心,液体内部的均相沸腾也转变为非均相沸腾,但在考虑颗粒吸附的情况下,颗粒的吸附会使表面部分核化中心失去活性,弱化了原有非均相核化。  相似文献   

18.
The growth of high-temperature AlN and AlGaN layers on (0001) sapphire substrates by ammonia based molecular-beam epitaxy is studied. Factors affecting the formation of inverted domains in high-temperature AlN films are examined. The density of inverted domains is found to correlate with the density of nucleation islands during the initial stages of growth. The denser coverage of a surface by nucleation islands suppresses the formation of inverted domains. It is possible to increase the density of surface coating at the nucleation growth stage by increasing the degree of substrate nitriding, reducing the deposition temperature, and using intense ammonia fluxes during deposition of the initial layers. The kinetic model in the mean field approximation is developed to explain the observed effects of growth parameters on the density of nucleation islands. The growth features of AlN and its structure are taken into account. The obtained results are used to grow AlN/AlGaN layers with improved structural quality. The grown films have a root-mean-square surface roughness of 2 Å and 120 arc s FWHM of X-ray diffraction peaks for the AlN 0002 reflection. The density of inverted domains is decreased to below 105 cm-2. Improvement in the quality of the AlN films is achieved by using two-step growth and by the application of gallium as a surfactant.  相似文献   

19.
Magnetic relaxation measurements were carried out by magneto-optical Kerr effect on exchange biased (Pt/Co)5/Pt/FeMn multilayers with perpendicular anisotropy. In these films the coercivity and the exchange bias field vary with Pt spacer thickness, and have a maximum for 0.2 nm. Hysteresis loops do not reveal important differences between the reversal for ascending and descending fields. Relaxation measurements were fitted using Fatuzzo’s model, which assumes that reversal occurs by domain nucleation and domain wall propagation. For 2 nm thick Pt spacer (no exchange bias) the reversal is dominated by domain wall propagation starting from a few nucleation centers. For 0.2 nm Pt spacer (maximum exchange bias) the reversal is strongly dominated by nucleation, and no differences between the behaviour of the ascending and descending branches can be observed. For 0.4 nm Pt spacer (weaker exchange bias) the nucleation density becomes less important, and the measurements reveal a much stronger density of nucleation centers in the descending branch.  相似文献   

20.
The nucleation of diamond films could be greatly enhanced on mirror-polished Si substrate by a pulsed Nd:YAG laser beam without any thermal- and plasma-assisted processes during a very short time. The nucleation density increased with decreasing laser power density from 1.38×1010 to 1.17×109 W/cm2 and deposition pressure from 1013 to 4 mbar. The pulsed laser beam made no contribution to enhance nucleation at substrate temperature as low as 650°C. X-ray diffraction measurements showed the (1 1 1) diffraction peak of diamond for the samples obtained using only pulsed laser during 40 min. The enhanced nucleation and growth of diamond crystallites were attributed to effective excitation of reactive gases and etching of non-diamond carbon phases by the pulsed laser beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号