共查询到20条相似文献,搜索用时 125 毫秒
1.
Yuki Shimoda 《Journal of solid state chemistry》2009,182(10):2873-2879
New quadruple perovskite oxides Ba4LnIr3O12 (Ln=lanthanides) were prepared and their magnetic properties were investigated. They crystallize in the monoclinic 12L-perovskite-type structure with space group C2/m. The Ir3O12 trimers and LnO6 octahedra are alternately linked by corner-sharing and form the perovskite-type structure with 12 layers. The Ln and Ir ions are both in the tetravalent state for Ln=Ce, Pr, and Tb compounds , and for other compounds (Ln=La, Nd, Sm-Gd, Dy-Lu), Ln ions are in the trivalent state and the mean oxidation state of Ir ions is . An antiferromagnetic transition has been observed for Ln=Ce, Pr, and Tb compounds at 10.5, 35, and 16 K, respectively, while the other compounds are paramagnetic down to 1.8 K. 相似文献
2.
Ternary rare earth antimonates Ln3SbO7 (Ln=rare earths) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C2221 for Ln=Nd-Lu), in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Ln3SbO7 (Ln=Nd, Gd-Ho) compounds show an antiferromagnetic transition at 2.2-3.2 K. Sm3SbO7 and Eu3SbO7 show van Vleck paramagnetism. Measurements of the specific heat down to 0.4 K for Gd3SbO7 and the analysis of the magnetic specific heat indicate that the antiferromagnetic ordering of the 8-coordinated Gd ions occur at 2.6 K, and the 7-coordinated Gd ions order at a furthermore low temperature. 相似文献
3.
Keiichi Hirose 《Journal of solid state chemistry》2009,182(7):1624-1630
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior. 相似文献
4.
Hiroaki Nishimine 《Journal of solid state chemistry》2005,178(4):1221-1229
Ternary lanthanide-molybdenum oxides Ln3MoO7 (Ln=La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is P212121. The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the b-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La3MoO7 shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd3MoO7 show a clear antiferromagnetic transition at 2.5 K. From the susceptibility measurements, both Pr3MoO7 and Sm3MoO7 show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln3MoO7 compound in the temperature range between 370 and 710 K. 相似文献
5.
The crystal structures of Ba2LnSbO6 (Ln=La, Pr, Nd and Sm) at room temperature have been investigated by profile analysis of the Rietveld method using either combined X-ray and neutron powder diffraction data or X-ray powder diffraction data. It has been shown that the structure of Ba2LnSbO6 with Ln =La, Pr and Nd are neither monoclinic nor cubic as were previously reported. They are rhombohedral with the space group . The distortion from cubic symmetry is due to the rotation of the LnO6/SbO6 octahedra about the primitive cubic [111]p-axis. On the other hand, the structure of Ba2SmSbO6 is found to be cubic. All compounds contain an ordered arrangement of LnO6 and SbO6 octahedra. 相似文献
6.
Yuki Shimoda 《Journal of solid state chemistry》2010,183(9):1962-1969
Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba4LnM3O12 (Ln=rare earths; M=Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. Three MO6 octahedra are connected to each other by face-sharing and form a M3O12 trimer. The M3O12 trimers and LnO6 octahedra are alternately linked by corner-sharing, forming the perovskite-type structure with 12 layers. For Ln=Ce, Pr, and Tb, both the Ln and M ions are in the tetravalent state (Ba4Ln4+M4+3O12), and for other Ln ions, Ln ions are in the trivalent state and the mean oxidation state of M ions is +4.33 (Ba4Ln3+M4.33+3O12). All the Ba4Ln3+Ru4.33+3O12 compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba4Ln3+Ir4.33+3O12 is paramagnetic down to 1.8 K. Ba4Ce4+Ir4+3O12 orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba4Ce4+Ru4+3O12 is paramagnetic. These magnetic results were well understood by the magnetic behavior of M3O12. The effective magnetic moments and the entropy change for the magnetic ordering show that the trimers Ru4.33+3O12 and Ir4+3O12 have the S= ground state, and in other cases there is no magnetic contribution from the trimers Ru4+3O12 or Ir4.33+3O12.Measurements of the electrical resistivity of Ba4LnM3O12 and its analysis show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior. 相似文献
7.
Hiroaki Nishimine Makoto Wakeshima Yukio Hinatsu 《Journal of solid state chemistry》2004,177(3):739-744
Ternary iridium oxides Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) were prepared and their crystal structures, magnetic and thermal properties were investigated. Powder X-ray diffractions (XRDs) were measured for all samples and neutron diffraction (ND) measurements were performed for Pr3IrO7. All the profiles were refined with space group Cmcm (No. 63). The lattice parameters for Pr3IrO7 refined by using ND data are a=10.9782(13) Å, b=7.4389(9) Å, and c=7.5361(9) Å. From specific heat and differential thermal analysis (DTA) measurements, Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) show thermal anomalies at 261, 342, 420, and 485 K, respectively. The results of powder high-temperature XRD and ND measurements indicate that these anomalies are due to the structural phase transition. Magnetic susceptibilities of these compounds were measured in the temperature range between 1.8 and 400 K. Nd3IrO7 shows an antiferromagnetic transition at 2.6 K. A specific heat anomaly has also been observed at the same temperature. For Ln3IrO7 (Ln=Pr, Sm, and Eu), no magnetic anomalies have been found in the experimental temperature range. 相似文献
8.
Crystal structures and magnetic properties of the ternary oxides Ln3NbO7 (Ln=La, Pr, Nd, Sm-Lu) are reported. Their powder X-ray diffraction measurements and Rietveld analyzes show that they have the fluorite-related structures with space group Pnma (Ln=La, Pr, Nd), C2221 (Ln=Sm-Tb), or Fm-3m (Ln=Dy-Lu). Magnetic susceptibility measurements were carried out from 1.8 to 400 K. The Ln3NbO7 compounds for Ln=Pr, Gd, Dy-Yb show Curie-Weiss paramagnetic behavior, and Sm3NbO7 and Eu3NbO7 show van Vleck paramagnetism. On the other hand, two magnetic anomalies were observed for both Nd3NbO7 (0.6 and 2.7 K) and Tb3NbO7 (2.0 and 3.2 K). From the results of specific heat measurements, it was found that these anomalies are due to the antiferromagnetic ordering of Ln ions in two different crystallographic sites (the 8-coordinated and 7-coordinated sites). 相似文献
9.
Kazuhiro Yamamura Makoto Wakeshima Yukio Hinatsu 《Journal of solid state chemistry》2006,179(3):605-612
Structures and magnetic properties for double perovskites Ba2CaMO6 (M=W, Re, Os) were investigated. Both Ba2CaReO6 and Ba2CaWO6 show structural phase transitions at low temperatures. For Ba2CaReO6, the second order transition from cubic to tetragonal I4/m has been observed near 120 K. For Ba2CaWO6, the space group of the crystal structure is I4/m at 295 K and the transition to monoclinic I2/m has been observed between 220 K. Magnetic susceptibility measurements show that Ba2CaReO6 (S=1/2) and Ba2CaOsO6 (S=1) transform to an antiferromagnetic state below 15.4 and 51 K, respectively. Anomalies corresponding to their structural phase transition and magnetic transition have been also observed through specific heat measurements. 相似文献
10.
Makoto Wakeshima 《Journal of solid state chemistry》2006,179(11):3575-3581
Ternary lanthanide rhenium oxides Ln3ReO7 (Ln=Sm, Eu, Ho) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=Sm, Eu; C2221 for Ln=Ho). The magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Sm3ReO7 shows an antiferromagnetic transition at 1.9 K. The Eu3ReO7 indicates a magnetic anomaly at 12 K. On the other hand, the results of the specific heat measurements indicate that both Sm3ReO7 and Eu3ReO7 undergo a structure transition at 270 and 350 K, respectively. The Ho3ReO7 is paramagnetic down to 1.8 K. 相似文献
11.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters. 相似文献
12.
Magnetic properties of the 6H-perovskite-type oxides Ba3LnIr2O9 (Ln=La and Nd: monoclinic; Ln=Sm-Yb: hexagonal symmetry) were investigated. For all the title compounds, a specific heat anomaly was found at 5.3-17.4 K. At the corresponding temperatures, the magnetic susceptibilities show a slight variation in its gradient. These magnetic anomalies suggest the magnetic ordering of the magnetic moments (S=1/2) remaining in the Ir4.5+2O9 face-shared bioctahedra. In addition, the Ln3+ ions show the onset of the antiferromagnetic ordering around these temperatures. The Ba3NdIr2O9 only shows a ferromagnetic behavior below 17.4 K with a remnant magnetization of 1.25 μB. This behavior may be due to the ferromagnetic ordering of the Nd3+ moments. 相似文献
13.
Structures of the double perovskites Ba2LnNbO6 (Ln=La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Y) at room temperature have been re-examined by Rietveld profile analysis of X-ray diffraction data. It was shown that the correct phase sequence across the lanthanides is I2/m (Ln=La, Pr, Nd, and Sm), I4/m (Ln=Eu, Gd, Tb, and Dy), and (Ln=Ho and Y), respectively. All phases can be derived from the ideal cubic perovskite by ordering the Ln(III) and Nb(V) ions and by out-of-phase tilting the LnO6/NbO6 octahedra around either the primitive two-fold [110]p-axis (I2/m) or the four-fold [001]p-axis (I4/m). The monoclinic P21/n structure that contains both out-of-phase and in-phase tilt around the primitive [110]p- and [001]p-axis, respectively, has not been observed for this series of compounds. 相似文献
14.
Makoto Wakeshima 《Journal of solid state chemistry》2010,183(11):2681-2688
Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P212121, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P212121 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd3MoO7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm3MoO7 and the analysis of the magnetic specific heat indicate a “two-step” antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO7 were compared with the magnetic properties and structural transitions of Ln3MO7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir). 相似文献
15.
We report the single crystal structures of a series of lanthanide containing tantalates, Ln3Li5Ta2O12 (Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln3Li5Ta2O12 were determined by single crystal X-ray diffraction, where the Li+ positions and Li+ site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) Å for La3Li5Ta2O12, Pr3Li5Ta2O12, and Nd3Li5Ta2O12, respectively. A UV-Vis diffuse reflectance spectrum of Nd3Li5Ta2O12 was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd3Li5Ta2O12, the impedance data were collected in air in the temperature range 300?T(°C)?500. 相似文献
16.
Samuel J. Mugavero III 《Journal of solid state chemistry》2010,183(2):465-470
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K. 相似文献
17.
18.
Two series of elpasolite perovskites Ln2CoMnO6 and Ln2NiMnO6 (Ln=La, Pr, Nd, Sm, Gd) have been prepared. The electronic band gap and magnetic Curie temperature vary systematically as a function of the rare earth cation size within both series. Here we used Raman scattering spectroscopy along with the results of previous structural studies to show that there is little change in octahedral distortion but significant changes in the octahedral tilting angle upon decreasing lanthanide ionic radius. The data indicate differences in the orbital overlap and bond strengths between the two series of materials that allow us to understand variations in the magnetic and electrical properties within and between the two perovskite series. 相似文献
19.
Zhaoming Zhang Christopher J. Howard Kevin S. Knight 《Journal of solid state chemistry》2007,180(6):1846-1851
The crystal structure of the A-site deficient perovskite Ln1/3NbO3 (Ln=Nd, Pr) at room temperature has been determined, for the first time, as orthorhombic in space group Cmmm using high-resolution neutron powder diffraction. Pertinent features are the alternation of unoccupied layers of A-sites and layers partly occupied by Ln cations, as well as out-of-phase tilting of the NbO6 octahedra around an axis perpendicular to the direction of the cation/vacancy ordering. The phase transition behaviour of Nd1/3NbO3 has also been studied in situ. This compound undergoes a continuous phase transition at around 650 °C to a tetragonal structure in space group P4/mmm due to the disappearance of the octahedral tilting. The analysis of spontaneous strains shows that this phase transition is tricritical in nature. 相似文献
20.
Yuta Hashimoto 《Journal of solid state chemistry》2003,176(1):266-272
Magnetic properties of ternary sodium oxides NaLnO2 (Ln=rare earths) are investigated. Their crystal structures are grouped into three types of structures, which are α-LiFeO2, β-LiFeO2, and α-NaFeO2, depending on the size of rare earths. Their magnetic susceptibilities and specific heats have been measured from 1.8 to 300 K. Among them, NaGdO2, NaDyO2, and NaHoO2 show antiferromagnetic transitions at 2.4, 2.2, and 2.4 K, respectively, and NaNdO2 transforms to the ferromagnetic state below 2.4 K. NaSmO2, NaErO2, and NaYbO2 exhibit a magnetic anomaly below 1.8 K. 相似文献