首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid solutions of barium containing Type I clathrate, Ba8−δSi46−xGex (0?x?23) were prepared under high-pressure and high-temperature conditions of 3 GPa at 800°C. All the solid solutions showed superconductivity, and the transition temperature (Tc) decreased from 8.0 to 2.0 K as the germanium content increased from x=0 to 23 in Ba8−δSi46−xGex. The single crystals with five different compositions were obtained and the structures, compositions, and site occupancies were determined from X-ray single-crystal analysis. A slight barium deficiency was observed at Ba1 (2a) sites for all the clathrates. The Ge atoms replaced the Si atoms at the Si3 (24k) site in the composition range of x<8, and then at the Si2 (16i) site. The crystals had a slight deficiency in the covalent (Si, Ge) network and the deficiency increased with the increase of the Ge content.  相似文献   

2.
The series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30 have been synthesized at 1400°C in air. They exhibit efficient excitation at about 400 nm and typical emission of Eu3+ at about 580-620 nm, form solid solutions within 0.0?x?2.0 and 0?y?4 respectively, and crystallized in P4/mbm at room temperature with Eu atoms occupied at centrosymmetric site (0, 0, 0). Their conductivity is very low (2.8×10−6 Ω−1 cm−1 at 740°C for Ba6Ti2Ta8O30).  相似文献   

3.
Structure and vibrational properties of Ba8GaxSi46−x (x=10 and 16) clathrates were studied by X-ray diffraction and Raman scattering measurements. The temperature dependent electrical resistivity measurement on Ba8Ga10Si36 has shown semiconducting nature of that clathrate with an energy band gap value of 0.31 eV. On the other hand the measurement on Ba8Ga16Si30 has shown metallic like electrical conductivity of that clathrate. The origin of semiconductivity in Ba8Ga10Si36 was found to be due to the vacancy disorder in the framework sites. Room temperature Raman scattering measurements resolved several Raman vibrational modes, including low frequencies ones corresponding to the rattling motion of Ba atoms. The low frequency positions of Ba in the respective clathrates at 49.4, 73.7 and 97.3 cm−1 for Ba8Ga10Si36 and at 43.7, 74.5 and 92.4 cm−1 for Ba8Ga16Si30 were found to be in agreement with the reported density functional (DF) calculated low frequency modes of Ba8Ga16Si30. The framework gallium difference and vacancy disorders were found to influence the position and widths of frequency modes. Room temperature lattice thermal conductivity of Ba8Ga10Si36 and Ba8Ga16Si30 were 1.128 and 1.071 Wm−1 K−1, respectively, and this low value was attributed to the resonant scattering between the framework acoustic and Ba rattling modes.  相似文献   

4.
Phase stability of the type-I clathrate compound Ba8AlxSi46−x and the thermoelectric property dependence on chemical composition are presented. Polycrystalline samples were prepared by argon arc melting and annealing. Results of powder X-ray diffraction and electron microprobe analysis show that the type-I structure is formed without framework deficiency for 8≤x≤15. Lattice constant a increases linearly with the increase of x. Thermoelectric properties were measured for x=12, 14 and 15. The Seebeck coefficients are negative, with the absolute values increasing with x. The highest figure of merit zT=0.24 was observed for x=15 at T=1000 K, with carrier electron density n=3×1021 cm−3. A theoretical calculation based on the single parabolic band model reveals the optimum carrier concentration to be n∼4×1020 cm−3, where zT∼0.7 at T=1000 K is predicted.  相似文献   

5.
A new ternary, intermetallic compound, Ba14Zn5−xAl22+x, was synthesized by heating the pure elements at 900°C. This compound crystallizes in the monoclinic space group I2/m, Z=2, with a=10.474(2) Å, b=6.0834(14) Å, c=34.697(8) Å and β=90.814(4)°. The crystal structure of Ba14Zn5−xAl22+x consists of [Zn5−xAl22+x] slabs that are built with a novel, two-dimensional (2D) network of Zn and Al atoms involving eight-membered rings sandwiched between two layers of trigonal bipyramids interconnected by three-center bonding. Tight-binding, linear muffin-tin orbital (TB-LMTO-ASA) calculations have been performed to understand the relationship between composition and orbital interactions in the electronegative element framework. This new structure is closely related to the high-pressure, cubic Laves-type structure of BaAl2 as well as the ambient pressure binary compound, Ba7Al13. The degree of valence electron charge transfer from the electropositive Ba atoms is related to the Al:Ba molar ratio in the Ba-Zn-Al system.  相似文献   

6.
Structural and photoluminescence properties of undoped and Ce3+-doped novel silicon-oxynitride phosphors of Ba4−zMzSi8O20−3xN2x (M=Mg, Sr, Ca) are reported. Single-phase solid solutions of Ba4−zMzSi8O20−3xN2x oxynitride were synthesized by partial substitutions of 3O2−→2N3− and Ba→M (M=Mg, Ca, Sr) in orthorhombic Ba2Si4O10. The influences of the type of alkaline earth ions of M, the Ce3+ concentration on the photoluminescence properties and thermal quenching behaviors of Ba3MSi8O20−3xN2x (M=Mg, Ca, Sr, x=0.5) were investigated. Under excitation at about 330 nm, Ba3MSi8O20−3xN2x:Ce3+ (x=0.5) exhibits efficient blue emission centered at 400-450 nm in the range of 350-650 nm owing to the 5d→4f transition of Ce3+. The emission band of Ce3+ shifts to long wavelength by increasing the ionic size of M due to the modification of the crystal field, as well as the Ce3+ concentrations due to the Stokes shift and energy transfer or reabsorption of Ce3+ ions. Among the silicon-oxynitride phosphors of Ba3MSi8O18.5N:Ce3+, M=Sr0.6Ca0.4 possesses the best thermal stability probably related to its high onset of the absorption edge of Ce3+.  相似文献   

7.
The magnetic structures of RSn1+xGe1−x (R=Tb, Dy, Ho and Er, x≈0.1) compounds have been determined by neutron diffraction studies on polycrystalline samples. The data recorded in a paramagnetic state confirmed the orthorhombic crystal structure described by the space group Cmcm. These compounds are antiferromagnets at low temperatures. The magnetic ordering in TbSn1.12Ge0.88 is sine-modulated described by the propagation vector k=(0.4257(2), 0, 0.5880(3)). Tb magnetic moment equals 9.0(1) μB at 1.62 K. It lies in the b-c plane and form an angle θ=17.4(2)° with the c-axis. This structure is stable up to the Nèel temperature equal to 31 K. The magnetic structures of RSn1+xGe1−x, where R are Dy, Ho and Er at low temperatures are described by the propagation vector k=(1/2, 1/2, 0) with the sequence (++−+) of magnetic moments in the crystal unit cell. In DySn1.09Ge0.91 and HoSn1.1Ge0.9 magnetic moments equal 7.25(15) and 8.60(6) μB at 1.55 K, respectively. The moments are parallel to the c-axis. For Ho-compound this ordering is stable up to TN=10.7 K. For ErSn1.08Ge0.92, the Er magnetic moment equals 7.76(7) μB at T=1.5 K and it is parallel to the b-axis. At Tt=3.5 K it tunes into the modulated structure described by the k=(0.496(1), 0.446(4), 0). With the increase of temperature there is a slow decrease of kx component and a quick decrease of ky component. The Er magnetic moment is parallel to the b-axis up to 3.9 K while at 4 K and above it lies in the b-c plane and form an angle 48(3)° with the c-axis. In compounds with R=Tb, Ho and Er the magnetostriction effect at the Nèel temperature is observed.  相似文献   

8.
Two new phases, Yb1−xAl3−xSix and Yb1−yAl3−xGex, were found by systematic investigations of the according ternary systems. The crystal structures of Yb1−yAl2.8Si0.2 and Yb1−yAl2.8Ge0.2 (defect HT-PuAl3 type) were studied by X-ray powder methods (CuKα1 radiation, λ=1.54056 Å, hexagonal system, space group P63/mmc (No. 194), a=6.009(1) and 6.015(1) Å, c=14.199(2) and 14.241(5) Å, V=444.0(2) and 446.2(3) Å3, 93 and 92 reflections, and 8200 and 8000 profile points for silicide and germanide, respectively). Full profile refinements with 11 and 13 structural parameters resulted in RI=0.049 and 0.054, and Rp=0.088 and 0.104, respectively. The ternary structures are distorted closest packings in comparison with the binary YbAl3 compound with AuCu3-type structure. They are characterized by the formation of Al3-, Si3-, and Ge3-homoatomic clusters and aluminum networks. Magnetization measurements show that both the silicide and germanide are valence fluctuation compounds with enhanced electronic density of states at the Fermi level similar to the binary YbAl3. The characteristic maximum of the magnetic susceptibility increases from ≈120 K for YbAl3 to ≈140 K for Yb1−yAl2.8Si0.2or Yb1−yAl2.8Ge0.2 and further to ≈150 K for Yb1−yAl2.75Si0.25. The S-shape of the electrical resistivity curves is also characteristic of valence fluctuations.  相似文献   

9.
The series Ba1−xLaxTi1−xCrxO3 (0≤x≤1) was synthesized at 1400°C for about 60 h. Their structure was carefully analyzed by the use of powder X-ray diffraction and Rietveld analysis software GSAS (General Structure Analysis System). Four solid solutions are found in this series: tetragonal solid solution Ba1−xLaxTi1−xCrxO3 (0≤x≤0.029), cubic solid solution Ba1−xLaxTi1−xCrxO3 (0.0365≤x≤0.600), rhombohedral solid solution Ba1−xLaxTi1−xCrxO3 (0.700≤x≤0.873), and orthorhombic solid solution Ba1−xLaxTi1−xCrxO3 (0.956≤x≤1). There are corresponding two-phase regions between the adjacent two solid solutions. The detailed lattice parameters are presented. The relationship between the lattice parameters and the composition of the solid solutions is developed.  相似文献   

10.
The title compounds MxTa11−xGe8 (M=Ti, Zr, Hf) were prepared from the pure elements by arc-melting and subsequent induction heating at temperatures between 1200°C and 1400°C. X-ray powder diffraction studies of the samples were performed using the Guinier technique and the respective powder patterns were refined with a structure model based on the orthorhombic Cr11Ge8-structure type (oP76, Pnma). The homogeneity ranges of the compounds were determined to be 0.9<x<1.3 (M=Ti), 0.7<x<1.3 (M=Zr) and 0.7<x<2.4> (M=Hf) by means of electron probe microanalysis. Chemical bonding, electronic structure and site preferences are discussed based on extended Hückel calculations performed on hypothetical binary Ta11Ge8.  相似文献   

11.
A crystallographic study of the Si/Ge site preferences in the Si-rich regime of Gd5(SixGe1−x)4 and a crystal chemical analysis of these site preferences for the entire range is presented. The room temperature crystal structure of Gd5Si4 as well as four pseudobinary phases, Gd5(SixGe1−x)4 for x?0.6, is reported. All structures are orthorhombic (space group Pnma), Gd5Si4-type and show decreasing volume as the Si concentration increases. Refinements of the site occupancies for the three crystallographic sites for Si/Ge atoms in the asymmetric unit reveal a nonrandom, but still incompletely ordered arrangement of Si and Ge atoms. The distribution of Si and Ge atoms at each site impacts the fractions of possible homonuclear and heteronuclear Si-Si, Si-Ge and Ge-Ge dimers in the various structures. This distribution correlates with the observed room temperature crystal structures for the entire series of Gd5(SixGe1−x)4.  相似文献   

12.
ABO3 amorphous materials, such as BaTiO3 (BT), SrTiO3 (ST), PbTiO3 (PT), and BaxSr1−xTiO3 (BST) have recently attracted a good deal of attention due to their ferroelectric and electro-optical properties. Intense photoluminescence at room temperature was observed in amorphous titanate doped with chromium (BaxSr1−xTi1−yCryO3) prepared by the polymeric precursor method. Results indicated that substantial luminescence at room temperature was achieved with the addition of small Cr contents to amorphous BaxSr1−xTi1−yCryO3. Further addition of Cr or crystallization were deleterious to the intensity of the luminescent peak obtained for excitation using λ=488.0 nm.  相似文献   

13.
Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb2-Sb-M were studied by optical and electron microscopy, X-ray diffraction, and electron probe microanalysis on arc-melted alloys and specimens annealed in the temperature region from 850 to 200 °C. The results, in combination with an assessment of all literature data available, were used to construct solidus surfaces and a series of isothermal sections. No ternary compounds were found to form in the Ce-Si-Sb system whilst Ce12Ge9−xSb23+x (3.3<x<4.2) and CeSnxSb2 (0.1<x<0.8) participate in phase equilibria in the composition region investigated. Crystallographic parameters for the ternary compound Ce12Ge9−xSb23+x (x=3.8±0.1) were determined from X-ray single crystal and powder diffraction. For the binary system Ge-Sb a eutectic was defined L⇔(Ge)+(Sb) at 591.6 °C and 22.5 at%. Ge EPMA revealed a maximal solubility of 6.3 at% Ge in (Sb) at the eutectic temperature.  相似文献   

14.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

15.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

16.
The intermetallic compound Co7+xZn3−xSn8 (−0.2<x<0.2) forms from the reaction of cobalt in zinc/tin eutectic flux. This phase has a new structure type in orthorhombic space group Cmcm, with unit cell parameters a=4.138(1) Å, b=12.593(4) Å, and c=11.639(4) Å (Z=2; R1=0.0301). Varying the amount of cobalt in the synthesis leads to formation of a superstructure in space group Pnma, with lattice parameters a=12.5908(2) Å, b=11.6298(3) Å, and c=8.2704(2) Å (Z=4; R1=0.0347). A Co/Zn mixed site and a partially occupied Co site in the Cmcm structure order to form the Pnma supercell. TGA/DSC studies indicate that the binary phase CoSn initially forms in the flux at 1173 K, and then reacts with the zinc in the cooling solution to form the ternary structure at 823 K. This phase exhibits Pauli paramagnetic behavior.  相似文献   

17.
The Ca2(ZnxFe2−x)O5 series was synthesized and characterized to determine the influence of zinc dopant on the brownmillerite structure for thermoelectric applications. All single-phase compounds exhibited Pnma symmetry at room temperature up to the solubility limit at x=0.10. High-temperature X-ray powder diffraction was used to show that the nature of the Pnma-Imma(0 0 γ)s00 transition in Ca2Fe2O5 is modified by the presence of zinc. While the Zn-free composition transitions to an incommensurate phase, the Zn-containing phases transition instead to a commensurate phase, Imma(0 0 γ)s00 with γ=1/2. Both the Néel temperature and the onset temperature of the Pnma-Imma(0 0 γ)s00 phase transition decreased with increasing zinc concentration. Rietveld analysis of the in situ diffraction pattern for the x=0 sample at 1300 °C demonstrates that the structure contains statistically disordered chain orientations as described by space group Imma. Thermoelectric properties were analyzed in air from 100 to 800 °C. The positive Seebeck coefficient revealed hole-type conduction for all compositions. Doped samples exhibited electrical conductivities up to 3.4 S/cm and thermal conductivity of 1.5 W/mK. Transport analysis revealed thermally activated mobility consistent with polaron conduction behavior for all compositions.  相似文献   

18.
We present an investigation of the quasibinary systems CoIn3−xZnx and CoGa3−xZnx which were structurally characterized by X-ray diffraction experiments and, in the case of CoGa3−xZnx, additionally by neutron powder diffraction experiments. The limiting compositions were found to be x=0.81(2) and x=0.73(2) for CoIn3−xZnx and CoGa3−xZnx, respectively. The isotypic binary compounds CoIn3 and CoGa3 crystallize with the FeGa3 structure type (tetragonal, space group P42/mnm, Z=4) in which the p-block atoms form an array of columns of centered cubes defined by two different crystallographic sites. The substitution of In or Ga by Zn takes place in an ordered fashion and produces “colored” variants of the FeGa3 parent structure: In both systems Zn enters exclusively the position corresponding to the cube centers. Additionally, in CoIn3−xZnx this position is substituted in such a way that for a composition CoIn2.5Zn0.5, columns of Zn- and In-filled In8 cubes along the c axis alternate. The latter substitution pattern is accompanied by a symmetry lowering of the parent FeGa3 structure: The structure of CoIn3−xZnx is described by the space group P42/m in which the cube center position is split into two separate sites. By performing first-principles electronic structure calculations we investigated the general bonding situation of the compounds CoIn3 and CoGa3 and the particular electronic effect when incorporating Zn. With respect to the density of states of the binary compounds the exchange of Ga or In by Zn virtually affects only the electronic states just below the Fermi level. On increasing Zn concentration a dip is created in the density of states which approximately coincides with the location of the Fermi level for an electron count corresponding to limiting composition of the two systems.  相似文献   

19.
In order to find the optimal conditions for sample preparation of the binary germanide Ba6Ge25, the germanium-rich part of the Ba-Ge phase diagram was redetermined by means of metallography, X-ray powder diffraction and differential thermal analysis. The temperature behavior of cubic Ba6Ge25 was investigated both on polycrystalline samples and single crystals. The temperature dependence of the lattice parameter exhibits two anomalies at about 180 and 230 K, respectively, which are caused by a structure transformation in two steps with hysteresis. Powder (T=10-295 K) and single-crystal (T=95-295 K) X-ray diffraction studies confirm that the symmetry of Ba6Ge25 (space group P4132) remains unchanged within the entire temperature range. A reconstructive behavior of the structural transformation is observed, involving Ge-Ge bond breaking and barium cation displacements. Some Ge4 type atoms (∼28%) are so significantly displaced during cooling that Ge4-Ge6 bonds break and new three-bonded (3b)Ge species (electron acceptors) are formed. Consequently, the number of charge carriers is reduced, affecting the physical properties. The reversible bond breaking involved in this process is a typical characteristic of a solid-state chemical reaction.  相似文献   

20.
A novel quaternary scandium borocarbosilicide Sc3.67−xB41.4−yzC0.67+zSi0.33−w was found. Single crystallites were obtained as an intergrowth phase in the float-zoned single crystal of Sc0.83−xB10.0−yC0.17+ySi0.083−z that has a face-centered cubic crystal structure. Single crystal structure analysis revealed that the compound has a hexagonal structure with lattice constants a = b = 1.43055(8) nm and c = 2.37477(13) nm and space group (No. 187). The crystal composition calculated from the structure analysis for the crystal with x = 0.52, y = 1.42, z = 1.17, and w = 0.02 was ScB12.3C0.58Si0.10 and that agreed rather well with the composition of ScB11.5C0.61Si0.04 measured by EPMA. In the crystal structure that is a new structure type of boron-rich borides, there are 79 structurally independent atomic sites, 69 boron and/or carbon sites, two silicon sites and eight scandium sites. Boron and carbon form seven structurally independent B12 icosahedra, one B9 polyhedron, one B10 polyhedron, one irregularly shaped B16 polyhedron in which only 10.7 boron atoms are available because of partial occupancies and 10 bridging sites. All polyhedron units and bridging site atoms interconnect each other forming a three-dimensional boron framework structure. Sc atoms reside in the open spaces in the boron framework structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号